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Stata command

. power twomeans 0 (.4(.1)1), power(0.9) graph(ydimension(delta) 
xdimension(N))


.4

.6

.8

1

Ef
fe

ct
 s

iz
e 

(δ
)

4654 68 88 120 172 266
Total sample size (N)

Parameters: α = .05, 1-β = .9, µ1 = 0, σ = 1

t test assuming σ1 = σ2 = σ
H0: µ2 = µ1  versus  Ha: µ2 ≠ µ1

Effect size for a two-sample means test
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How to use this guide

This guide has sample size ready-reckoners for many common research 
designs. Each section is self-contained You need only read the section that 
applies to you.

If you are new to sample size calculation, read the first section first. 


Examples

There are examples in each section, aimed at helping you to describe your 
sample size calculation in a research proposal or ethics committee submission. 
They are largely non-specialist. If you have useful examples, I welcome 
contributions.


Feedback

If you have trouble following this guide, please email me. Your comments help 
to improve it. If you spot an error, please let me know.


Support

This guide has slowly percolated around the internet. I’m pleased to handle 
queries from staff and students of RCSI and affiliated institutions. However, I 
cannot deal with queries from elsewhere. I’m sorry. 


Warranty?

This document is provided as a guide. While every attempt has been made to 
ensure its accuracy, neither the author nor the Royal College of Surgeons in 
Ireland takes any responsibility for errors contained in it. 


What’s new

This version May 2021. 

2020 : Updated text additional references and discussions based on current 
literature, updated web links.

2021 : Intraclass correlation section added.  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Introduction : sample size and why it’s important

Sample size is an important issue in research. Ethics committees and funding 
agencies are aware that if a research project is too small, it misses failing to 
find what it set out to detect. Not only does this waste the input of the study 
participants (and frequently, in the case of animal research, their lives) but by 
producing a false negative result a study may do a disservice to research by 
discouraging further exploration of the area. 

And, of course, if a study is too large it will waste resources that could have 
been spent on something else. 

So the ideal sample size is one that collects sufficient data to have a good 
chance of measuring what you set out to measure.


Key issues: representativeness and precision

When choosing a sample, there are two important issues: 

• will the sample be representative of the population, and 

• will the sample be precise enough. 

The first criterion of a good sample is sample representativeness. An 
unrepresentative sample will result in biased conclusions, and the bias cannot 
be eliminated by taking a larger sample. For this reason, sampling methodology 
is the first thing to get right. 

The second criterion is sample precision. The larger the sample, the smaller 
the margin of uncertainty (confidence interval) around the results. However, 
there is another factor that also affects precision: the variability of the thing 
being measured. The more something that varies from person to person the 
bigger your sample needs to be to achieve the same degree of certainty about 
your results.

This guide deals with the issue of sample size. Remember, however, that sample 
size is of secondary importance to sample representativeness. 


Key terms used in this sample size calculation

Precision – what it is, what determines it

Precision is the amount of potential error in a finding. Low-precision studies 
have wide margins of error around their findings, while high-precision studies 
have narrow margins of error. The degree of precision is partly determined 
by the sample size. In some sample size calculations, you will need to begin 
by deciding how much precision you require or, equivalently, the degree of 
uncertainty you are prepared to tolerate in your findings. 

Precision is also determined by the variability in the thing you are 
studying. If something has little variation, such as body temperature, then you 
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will require a smaller sample than for something that varies quite a lot, like 
blood pressure. 

You can easily imagine variability when it comes to things measured on a 
numeric scale. But what about things that are measured on a simple 
dichotomous scale – present/absent, true/false for example. Years ago, a 
colleague came up with an excellent example. Imagine a crowd of spectators 
where the supporters of one team wore white and supporters of the other team 
wore black. If one team had 100% support, the crowd would be all one colour – 
no variability. The maximum variability would occur where there was 50% 
support for each team. This is exactly what happens with dichotomous 
variables. The closer the prevalence is to 50%, the higher the variability. At 0% 
and 100% there's no variability at all.

Prevalence

Prevalence is how frequently a characteristic is found is in the population you 
are studying. Although we speak of prevalences every time we say something 
like “ten percent of people” or “a third of new admissions”, we rarely use the 
word prevalence for these fractions or percentages. This guide will use 
‘prevalence’ as a general term for proportions, fractions and percentages.

Variability

The more variable is the thing we are studying, the more data we will have to 
gather in order to achieve a given level of precision. This makes sense 
intuitively when we are measuring something on a numeric scale. But it also 
applies to other types of measurement too, even to percentages.

Looking at the tables that show sample sizes for different prevalences, you will 
see that the required sample size rises as the prevalence approaches 50%. This 
is because when 50% of people have a characteristic and 50% do not, that 
characteristic has the highest person-to-person variability. As the prevalence 
nears zero or 100%, variability decreases, and so the required sample size will 
also decrease. 

For continuous variables, the standard deviation is used as a measure of 
variability. This is sometimes known, or guessable, from previously published 
work, and this guide will tell you how to do this. But even if it is unknown, the 
guide will show you how to make an informed guess.

Effect size

Many sample size calculations require you to stipulate an effect size. This is 
the smallest effect that is clinically significant (as opposed to statistically 
significant). Clinical significance is a health research term that is used to mean 
“practical significance” or “real life significance”. The task of deciding on the 
smallest effect that would be clinically significant requires knowledge of the 
purpose of the research and the current state of knowledge and practice. 
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For example, if you are planning to compare two treatments, you have to 
decide how big a difference between two groups should be before it would be 
regarded as clinically important. You might define it as the smallest effect that 
would be noticed by the person being treated, or the smallest effect that would 
alter the management of the patient, or the smallest effect required to change 
the person’s diagnosis. 

The whole question of what constitutes a clinically significant finding is outside 
the scope of statistics. However, you will see from the tables that I have tried to 
help out by translating the rather abstract language of effect size into terms of 
patient benefit or differences between people. 

What effect size isn’t

It is important to realise what effect size is not. Effect size is not the effect that 
you think is there. We tend to have high hopes for our theories, and therefore 
hope that the treatment or risk factor we are interested in will have a very 
important effect. However, in sample size calculation, effect size is always the 
smallest effect that would be clinically significant. Not the one that you hope is 
there.

Importantly, too, effect size is not what was published by someone else. Again, 
this is an estimate of the actual effect size, but research must have adequate 
power to detect the smallest clinically significant effect size. Often the early 
publications in a field are biased towards larger effect sizes. This is not just 
because of publication bias, but also because methodologies will improve and 
things will always work less well when they leave the lab for the real world. 

Power

Power if the chance that what you are looking for will be detected in your 
sample, if it actually exists. No sample, however big, is a guarantee that you 
will detect what you are looking for. However, it is foolish to do research 
without a reasonable chance that your study will detect it if it exists. And that 
“if it exists” is very important. The power of a study is its chance of 
detecting an effect of a given size, if an effect of at least that size exists. 

Decades ago, studies were often run with 80% power. That is to say, there was 
an 80% chance that they would detect the effect if it existed but was the 
smallest clinically significant effect. And, therefore, there was a 20% chance – 
one in five – that they would fail to detect it and come to a false-negative 
conclusion. 

A 20% probability of a false-negative conclusion is now regarded as 
unacceptable by ethics committees. Why waste the time (and lives) of research 
participants on projects that have a built-in 20% chance of failure? The sample 
sizes in this guide assume that you want 90% or even 95% power to detect 
what you are looking for. 
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Things that are not sample size calculations

Before going on to cover specific research scenarios, I should mention some 
things appear in ethics submissions and grant applications that are not 
acceptable as sample size calculations. 

The following are the most usual offenders:

Everyone else used six animals per group

The legal advisor to RCSI’s research ethics committee has advised us that there 
is no legal defence that runs Well, everyone else did it too. So the fact that 
someone else used this sample size does not justify it, whether or not the 
research was published. There are grounds for using 6 animals per group, but 
they are laid out below under comparing the means of two groups.

We did another study that used 10 patients and it was significant/got 
published

It’s important, too, to emphasise here the point made above, that sample size 
should be set to detect the minimum effect that would be clinically significant, 
not the effect that someone else found or that the researcher thinks is there. 
Small studies are only likely to be published if they find something interesting. 
So they are likely to be misleading about the potential effect size. 

We have limited funding/the student is only available for x weeks

Limited funding and limited time are not excuses for doing bad research. If you 
spend your resources on a research project that has no reasonable chance of 
being able to answer the research question because it is simply too small, then 
you have wasted your limited resources. 

This is just a student project

Finally, student projects often lack the time and resources to recruit a sample 
big enough to have decent statistical power. Ethics committees understand that 
student research is where students learn research methods. So long as the 
application is accompanied by a calculation that shows the applicant is aware 
of the power of the proposed sample size, and the potential effect that this will 
have on the analysis and interpretation of the data, small sample size is not in 
itself an obstacle to receiving ethical approval – though it will probably be an 
obstacle to publication. 
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1. Sample size for percentages or proportions

This section give guidelines for sample sizes for 

• studies that measure the proportion or percentage of people who have some 

characteristic, 

• and for studies that compare this proportion with either a known population 

or with another group. 

The characteristic being measured can be a disease, an opinion, a behaviour : 
anything that can be measured as present or absent. 


Prevalence

Prevalence is the technical term for the proportion of people who have some 
feature. You should note that for a prevalence to be measured accurately, the 
study sample should be a valid sample. That is, it should not contain any 
significant source of bias. 


1.1 Sample size for simple prevalence studies

The sample size needed for a prevalence study depends on how precisely you 
want to measure the prevalence. (Precision is the amount of error in a 
measurement.) The bigger your sample, the less error you are likely to make in 
measuring the prevalence, and therefore the better the chance that the 
prevalence you find in your sample will be close to the real prevalence in the 
population. You can calculate the margin of uncertainty around the findings of 
your study using confidence intervals. A confidence interval gives you a 
maximum and minimum plausible estimate for the true value you were trying to 
measure. 

Step 1: decide on an acceptable margin of error

The larger your sample, the less uncertainty you will have about the true 
prevalence. However, you do not necessarily need a tiny margin of uncertainty. 
For an exploratory study, for example, a margin of error of ±10% might be 
perfectly acceptable. A 10% margin of uncertainty can be achieved with a 
sample of only 100. However, to get to a 5% margin of error will require a 
sample of 384 (four times as large). 

Step 2: Is your population finite?

Are you sampling a population which has a defined number of members? Such 
populations might include all the physiotherapists in private practice in Ireland, 
or all the pharmacies in Ireland. If you have a finite population, the sample size 
you need can be significantly smaller. 

Step 3: Simply read off your required sample size from table 1.1.  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Table 1.1 Sample sizes for prevalence studies


Example 1: Sample size for a study of the prevalence of burnout in students at a large 
university

A researcher is interested in carrying out a prevalence study using simple 
random sampling from a population of over 11,000 university students. She 
would like to estimate the prevalence to within 5% of its true value. 

Since the population is large (more than 5,000) she should use the first column 
in the table. A sample size of 384 students will allow the study to determine the 
prevalence of anxiety disorders with a confidence interval of ±5%. Note that if 
she wants increase precision so that her margin of error is just ±3%, she will 
have to sample over 1,000 participants. Sample sizes increase rapidly when 
very high precision is needed. 

Example 2: Sample size for a study of a finite population

A researcher wants to study the prevalence of bullying in registrars and senior 
registrars working in Ireland. There are roughly 500 doctors in her population. 
She is willing to accept a margin of uncertainty of ±7.5%. 

Here, the population is finite, with roughly 500 registrars and senior registrars,  
so the sample size will be smaller than she would need for a study of a large 
population. A representative sample of 127 will give the study a margin of error 
(confidence interval) of ±7.5% in determining the prevalence of bullying in the 
workplace, and 341 will narrow that margin of error to ±3%. 


Acceptable 
margin of 

error
Size of population

Large 5000 2500 1000 500 200
±20% 24 24 24 23 23 22
±15% 43 42 42 41 39 35
±10% 96 94 93 88 81 65

±7.5% 171 165 160 146 127 92
±5% 384 357 333 278 217 132
±3% 1067 880 748 516 341 169
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Frequently asked questions

Suppose my study involves analysing subgroups, how do I calculate 
sample size?

In some cases, you may be interested in percentages or prevalences within 
subgroups of your sample. In this case, you should check that they sample size 
will have enough power to give you an acceptable margin of error within the 
smallest subgroup of interest.

For example, you may be interested in the percentage of mobile phone users 
who are worried about the effects of radiation. A sample of 384 will allow you 
to measure this percentage with a margin of error of no more than ±5% of its 
true value. 

However, you are also interested in subgroups, such as men and women, older 
and younger people, people with different levels of education etc. You reckon 
that the smallest subgroup will be older men, who will probably make up only 
10% of the sample. This would give you about 38 men, slightly fewer than you 
need for a margin of error of ±20%. If this is not acceptable, you might 
increase the overall sample size, use stratified sampling (where a fixed number 
of each subgroup is recruited) or decide not to analyse rarer subgroups.

If you want to compare subgroups, however, go to section 1.3

What if I can only survey a fixed number of people?

You can use the table to find the approximate margin of error of your study. You 
will then have to ask yourself if this margin of error is acceptable. You may 
decide not to go ahead with the study because it will not give precise enough 
results to be useful. 

How can I calculate sample size for a different margin of error?

All these calculations were done on a simple web page at 

http://www.surveysystem.com/sscalc.htm
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1.2 Sample sizes for studies comparing a prevalence  
with a hypothesised value

This section give guidelines for sample sizes for studies that measure the 
proportion or percentage of people who have some characteristic with the 
intention of comparing it with a percentage that is already known from 
research or hypothesised. 


This characteristic can be a disease, and opinion, a behaviour, anything that 
can be measured as present or absent. You may want to demonstrate that the 
population you are studying has a higher (or lower) prevalence than some other 
population that you already know about. For example, you might want to see if 
medical students have a lower prevalence of smoking than other third level 
students, whose prevalence is already known from previous work.

Effect size

	 To begin with, you need to ask what is the smallest difference between 
the prevalence in the population you are studying and the prevalence in the 
reference population that would be considered meaningful in real life terms? 
This difference is often called a clinically significant difference in medicine, 
to draw attention to the fact that it is the smallest difference that would be 
important enough to have practical implications. 

	 The bigger your study, the greater the chance that you will detect such a 
difference. And, of course, the smaller the difference that you consider to be 
clinically significant, the bigger the study you need to detect it.

Step 1: Effect size: Decide on the smallest difference the study should be 
capable of detecting

You will have to decide what is the smallest difference between the group that 
you are studying and the general population that would constitute a 'clinically 
significant difference' – that is, a difference that would have real-life 
implications. If you found a difference of 5%, would that have real-life 
implications? If not, would 10%? There is a certain amount of guesswork 
involved, and you might do well to see what the norm was in the literature. 

For instance, if you were studying burnout in medical students and discovered 
that the rate was 5% higher than the rate for the general student population, 
would that have important real-life implications? How about if it was 10% 
lower? 10% higher? At what point would we decide that burnout in medical 
students was a problem that needed to be tackled?


Sample Size: studies measuring a percentage or proportion

11



Step 2: Prevalence: How common is the feature that you are studying in 
the population?

Sample sizes are bigger when the feature has a prevalence of 50% in the 
population. As the prevalence in the population group goes towards 0% or 
100%, the sample size requirement falls. If you do not know how common the 
feature is, you should use the sample size for a 50% prevalence as being the 
worst-case estimate. The required sample size will be no larger than this, no 
matter what the prevalence turns out to be. 

Step 3: what power do you want to detect a difference between the study 
group and the population?

	 A study with 90% power is 90% likely to discover the difference between 
the groups if such a difference exists. And 95% power increases this likelihood 
to 95%. So if a study with 95% power fails to detect a difference, the difference 
is unlikely to exist. You should aim for 95% power, and certainly accept nothing 
less than 90% power. Why run a study that has more than a 10% chance of 
failing to detect the very thing it is looking for?
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Step 4: Use table 1.2 to get an idea of sample size


Table 1.2 Comparing a sample with a known population


The table gives sample sizes for 90% and 95% power in three situations: when 
the population  prevalence is 50%, 25% and 10%.


If in doubt about the prevalence, err on the high side.

*Sample Stata code for column 

. power oneproportion .1 (.15(.05).4), test(wald) power(.95)

The bit that says (.15(.05).4) is a neat way of passing Stata a list of values. 
This one says “start at .15, increment by .05 and finish at .4”.


Population 
prevalence 50%

Population 
prevalence 25%

Population 
prevalence 10%

Difference 
between 
prevalences

Power Power Power

90% 95% 90% 95% 90% 95%*

+5% 1041 1287 883 1092 536 663
+10% 253 312 240 296 169 208
+15% 107 132 113 139 88 109
+20% 56 69 66 81 56 69
+25% 32 39 43 52 39 48
+30% 19 24 29 36 29 35

-5% 1041 1287 673 832 13 16
-10% 253 312 134 166
-15% 107 132 43 52
-20% 56 69 13 16
–25% 32 39
–30% 19 24

Sample Size: studies measuring a percentage or proportion

13



Example: Study investigating whether depression is more common in elderly people in 
nursing homes than in the general elderly population, using a limited number of available 
patients.

Depression has a prevalence of roughly 10% in the general elderly population. 
There are approximately 70 persons two nursing homes who will all be invited 
to participate in the research. A sample size of 69 would give the study 95% 
power to detect a 20% higher prevalence of depression in these participants 
compared with the general population. 


Example: Study recruiting patients with low HDL cholesterol levels to see if there is a 
higher frequency of an allele suspected of being involved in low HDL. The population 
frequency of the allele is known to be 25%

The researchers decide that to be clinically significant, the prevalence of the 
allele would have to be twice as high in patients with low HDL cholesterol. A 
sample of 36 patients will give them a 90% chance of detecting a difference this 
big or bigger, while 45 patients will give them a 95% chance of detecting it.


Reference

These calculations were carried out using Stata Version 13 using the power 
command.  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1.3 Sample sizes for studies comparing proportions 
between two groups

This section give guidelines for sample sizes for studies that measure the 
proportion or percentage of people who have some characteristic with the 
intention of comparing two groups sampled separately, or two subgroups within 
the same sample.


This is a common study design in which two groups are compared. In some 
cases, the two groups will be got by taking samples from two populations. 
However, in many cases the two groups may actually be subgroups of the same 
sample. If you plan on comparing two groups within the same sample, the 
sample size will have to be increased. Instructions for doing this are at the end 
of the section.

Step 1: Effect size: Decide on the difference the study should be capable 
of detecting

You will have to decide what is the smallest difference between the two groups 
that you are studying that would constitute a 'clinically significant difference' – 
that is, a difference that would have real-life implications. If you found a 
difference of 5%, would that have real-life implications? If not, would 10%? 
There is a certain amount of guesswork involved, and you might do well to see 
what the norm is in the literature. 

Step 2: Prevalence: How common is the feature that you are studying in 
the comparison group?

Sample sizes are bigger when the feature has a prevalence of 50% in one of the 
groups. As the prevalence in one group goes towards 0% or 100%, the sample 
size requirement falls. If you do not know how common the feature is, you 
should use the sample size for a 50% prevalence as being the worst-case 
estimate. The required sample size will be no larger than this no matter what 
the prevalence turns out to be. 

Step 3: Power: what power do you want to detect a difference between 
the two groups?

	 A study with 90% power is 90% likely to discover the difference between 
the groups if such a difference exists. And 95% power increases this likelihood 
to 95%. So if a study with 95% power fails to detect a difference, the difference 
is unlikely to exist. You should aim for 95% power, and certainly accept nothing 
less than 90% power. Why run a study that has more than a 10% chance of 
failing to detect the very thing it is looking for?
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Step 4: Use table 1.3 to get an idea of sample size

The table gives sample sizes for 90% and 95% power in three situations: when 
the  prevalence in the comparison group is 50%, 25% and 10%. If in doubt, err 
on the high side. The table shows the number in each group, so the total 
number is twice the figure in the table!


Table 1.3 Numbers needed in each group

*Sample Stata command that generated the figures in this column

. power twoproportion .5 (.45(-.05).2),  power(.9)

The notation .5 (.45(-.05).2) is a way of telling Stata to generate a list of 
values starting with 0·5, decreasing in units of 0·05 and ending with 0·2)


Example: Study investigating the effect of a support programme on smoking quit rates

The investigator is planning a study of the effect of a telephone support line in 
improving smoking quit rates in patients post-stroke. She knows that about 
25% of smokers will have quit at the end of the first year after discharge. She 
feels that the support line would make a clinically important contribution to 
management if it improved this this to 35%. The programme would not be 
justifiable from the cost point of view if the reduction were smaller than this. 
So a 10% increase is the smallest effect that would be clinically significant. 

From the table she can see that two groups of 440 patients would be needed to 
have a 90% power of detecting a difference of at least 10%, and two groups of 
543 patients would be needed for 95% power. She writes in her ethics 
submission:


Prevalence in 
one group 50%

Prevalence in 
one group 25%

Prevalence in 
one group 10%

Difference 
between the 
groups

Power Power Power

90%* 95% 90% 95% 90% 95%

5% 2095 2590 1674 2070 918 1135
10% 519 641 440 543 266 329
15% 227 280 203 251 133 164
20% 124 153 118 145 82 101
25% 77 95 77 95 57 70
30% 52 63 54 67 42 52
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Previous studies in the area suggest that as few as 25% of smokers are still not 
smoking a year after discharge. The proposed sample size of 500 patients in 
each group (intervention and control) will give the study a power to detect a 
10% increase in smoking cessation rate that is between 90% and 95%. 

Example: Study comparing risk of hypertension in women who continue to work and 
those who stop working during a first pregnancy.

Women in their first pregnancy have roughly a 10% risk of developing 
hypertension. The investigator wishes to compare risk in women who stop 
working and women who continue. She decides to give the study sufficient 
power to have a 90% chance of detecting a doubling of risk associated with 
continued working. The sample size, from the table, is two groups of 266 
women. She decides to increase this to 300 in each group to account for drop-
outs. She writes in her ethics submission:

Women in their first pregnancy have roughly a 10% risk of developing 
hypertension. We propose to recruit 300 women in each group (work cessation 
and working). The proposed sample size has a 90% power to detect a twofold 
increase in risk, from 10% to 20%.


Comparing subgroups within the same sample

This often happens when the two groups being compared are subgroups of a 
larger sample. For example, if you are comparing men and women coronary 
patients and you know that two thirds of patients are men. 

A detailed answer is beyond the scope of a ready-reckoner table, because the 
final sample size will depend on the relative sizes of the groups being 
compared. Roughly, if one group is twice as big as the other, the total sample 
size will be 20% higher, if one is three times as big as the other, 30% higher. In 
the case of the  coronary patients, if two thirds of patients are men, one group 
will be twice the size of the other. In this case, you would calculate a total 
sample size based on the table and then increase it by 20%.

Stata code

Suppose you are comparing two groups from the same sample. You are 
expecting the two groups to have a 20% and 80% prevalence. In this case, the 
ratio of the two groups is 80:20 which is 4:1. The Stata code for 90% power 
that gives the first column in the table above now reads


power twoproportions .5 (.45(-.05).2), test(chi2) power(0.9) 
nratio(4)


You can see that you simply have to specify nratio() to get the appropriate 
calculation. 
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Frequently-asked questions

What is 90% or 95% power?

Just because a difference really exists in the population you are studying does 
not mean it will appear in every sample you take. Your sample may not show 
the difference, even though it is there. To be ethical and value for money, a 
research study should have a reasonable chance of detecting the smallest 
difference that would be of clinical significance (if this difference actually 
exists, of course). If you do a study and fail to find a difference, even though it 
exists, you may discourage further research, or delay the discovery of 
something useful. For this reason, you study should have a reasonable chance 
of finding a difference, if such a difference exists. 

	 A study with 90% power is 90% likely to discover the smallest clinically 
significant difference between the groups if such a difference exists. And 95% 
power increases this likelihood to 95%. So if a study with 95% power fails to 
detect a difference, the difference is unlikely to exist. You should aim for 95% 
power, and certainly accept nothing less than 90% power. Why run a study that 
has more than a 10% chance of failing to detect the very thing it is looking for?

What if I can only study a certain number of people?

You can use the table to get a rough idea of the sort of difference you study 
might be able to detect. Look up the number of people you have available. 


Reference

These calculations were carried out using Stata release 13 power command 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1.4a Sample sizes for population case-control studies

This section give guidelines for sample sizes for studies that measure the effect 
of a risk factor by comparing a sample of people with the disease with a control 
sample of disease-free individuals drawn from the same population. The 
effect of the risk factor is measured using the odds ratio.  

Population case-control studies have the disadvantage that the controls and 
cases may differ on variables that will have an effect on disease risk 
(confounding variables), so a multivariable analysis will have to be carried out 
to adjust for these variables. The sample sizes shown here are inflated by 25% 
to allow for the loss of statistical power that will typically result from adjusting 
for confounding variables. 

If you are controlling for confounding variables by carrying out a matched 
case-control study, see section 1.4b.


A case-control study looks for risk factors for a disease or disorder by 
recruiting two groups of participants: cases of the disease or disorder, and 
controls, who are drawn from the same population as the cases but who did not 
develop the disease.

Case-control studies are observational studies. In experimental studies, we 
can hold conditions constant so that the only difference between the two 
groups we are comparing is that one group was exposed to the risk factor and 
the other was not. In observational studies, however, there can be other 
differences between those exposed to the risk factor and those not exposed. For 
example, if you are looking at the relationship between diarrhoeal disease in 
children and household water supply, households with high quality water will 
differ in other ways from households with low quality water. They are more 
likely to be higher social class, wealthier, and more likely to have better 
sanitation. These factors, which are associated with both the disease and the 
risk factor, are called confounding factors. 

Understanding confounding factors is important in designing and analysing 
case-control studies. Confounding factors can distort the apparent relationship 
between a risk factor and a disease, so their effects have to be adjusted for 
statistically during the analysis. In the diarrhoeal disease example, you might 
need to adjust your estimate of the effect of good water quality in the 
household for the association between good water quality and presence of a 
toilet. Any case-control study must identify and measure potential confounding 
factors. 

Sample size and adjustment for confounding factors

Allowing for confounding factors in the analysis of case-control studies 
increases the required sample size, because the statistical adjustment will 
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increase the margin of uncertainty around the estimate of the risk factor's odds 
ratio. If you don't understand the last bit, don't worry. The important thing is 
that you have to gather extra data in a case control study to allow you sufficient 
statistical power to adjust for confounding variables. How much extra data 
depends on how strongly the confounding factor is associated with the risk 
factor and the disease. Cousens and colleagues (see references) recommend 
increasing the sample size by 25%, based on simulation studies. The sample 
sizes in the tables in this section are inflated by 25% in line with this 
recommendation. 

Step 1: Prevalence: What is the probable prevalence of the risk factor in 
your population?

The prevalence of the risk factor will affect your ability to detect its effect. If 
most of the population is exposed to the risk factor, it will be common in your 
control group, making it hard to detect its effect, for example. If you are unsure 
about the prevalence of the risk factor in the population, err on the extreme 
side – that is, if it is rare, use the lowest estimate you have as the basis for 
calculations, and if it is common use the highest estimate.

Step 2: Effect Size: What is the smallest odds ratio that would be regarded 
as clinically significant?

The odds ratio expresses the impact of the factor on the risk of the disease or 
disorder. Usually we are only interested in risk factors that have a sizeable 
impact on risk – and odds ratio of 2, for example – but if you are studying a 
common, serious condition you might be interested in detecting an odds ratio 
as low as 1.5, because even a 50% increase in risk of something common or 
serious will be important at the public health level.

Step 3: Power: What statistical power do you want?

With 90% power, you have a 90% chance of being able to detect a clinically 
significant odds ratio. That is, though, a 10% chance of doing the study and 
failing to detect it. With 95% power, you have only a 5% chance of failing to 
detect a clinically significant odds ratio, if it exists.   

Step 4: Look up the number of cases from table 1.4
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Table 1.4a Number of cases required for a case control study

Note 1: This assumes a study that recruits an equal number of controls.

Note 2: The table has an allowance of 25% extra participants to adjust for 
confounding.


Smallest odds ratio that would be 
clinically significant

1.5 2 2.5 3 4 5

Prevalence 
of the risk 
factor

90% Power to detect the odds ratio

10% 1581 493 264 175 103 73

20% 929 300 165 113 69 50

30% 739 246 140 98 61 46

40% 674 231 134 95 63 49

50% 674 239 141 103 69 55

60% 730 265 161 118 81 65

70% 869 324 200 149 105 85

80% 1184 453 284 215 154 128

90% 2186 855 546 416 304 254

95% Power to detect the odds ratio

10% 1988 619 331 220 129 91

20% 1168 376 208 141 86 64

30% 929 309 175 121 78 59

40% 848 291 169 120 79 61

50% 848 300 178 129 86 69

60% 919 334 203 149 103 83

70% 1091 408 251 188 131 108

80% 1489 569 358 270 194 160

90% 2749 1075 686 524 383 320
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Example: A study to detect the effect of smoking on insomnia in elderly.

Step 1 is to estimate how common smoking is in the elderly. The current 
population estimate is that about 27% of the elderly smoke. 

Step 2 is to specify the minimum odds ratio that would be clinically significant. 
In this case, we might decide that an odds ratio of 2.5 would be the smallest 
one that would be of real importance. 

The table gives a sample size of 140 cases and 140 controls for 90% power to 
detect an odds ratio of at least 2.5 with a smoking prevalence of 30%. This is 
probably close enough to 27% to be taken as it is. 

When analysing the data, the effect of smoking may be confounded by the fact 
that smoking is more common in men, and insomnia is also more common in 
men. So the apparent relationship between insomnia and smoking could be 
partly due to the fact that both are associated with male sex. We can adjust the 
odds ratio for sex, and for other confounding factors during the analysis. 
Although this will reduce the study power, the sample size table has a built-in 
allowance of 25% extra to deal with the loss of power due to confounding. 

In an ethics submission, you would write

The sample size was calculated in order to have 90% power to detect an odds 
ratio of 2.5 or greater associated with smoking, given that the prevalence of 
smoking is approximately 30% in the target population. The sample size was 
inflated by 25% to allow for the calculation of an odds ratio adjusted for 
confounding variables such as gender, giving a planned sample size of 140 
cases and 140 controls. 


Frequently-asked questions

I only have 30 cases available to me – what can I do?

Looking at the table, it is clear that you cannot do a lot. You have a 90% chance 
of detecting a ten-fold increase in risk associated with a risk factor that is 
present in at least 20% of the population and at most 40%. Sample sizes for 
case-control studies are generally larger than people think, so it’s a good idea 
to look at the table and consider whether you have enough cases to go ahead.

Is there any way I can increase the power of my study by recruiting more 
controls?

Yes. If you have a limited number of cases, you can increase the power of your 
study by recruiting more controls. 

Step 1 : Look up the number of cases you need from table 1.4

Step 2: Use table 1.5 to look up an adjustment factor based on the number of 
controls per case that you plan on recruiting. Multiply the original number of 
cases by the adjustment factor.

Step 3: the number of controls you require is based on this adjusted number.
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Example: An obstetrician is interested in the relationship between manual 
work during pregnancy and risk of pre-eclampsia. She does some preliminary 
research and finds that about 20% of her patients do manual work during their 
pregnancy. She is interested in being able to detect an odds ratio of 3 or more 
associated with manual work. Since pre-eclampsia is comparatively rare, she 
plans to recruit three controls for each case. 


Table 1.4a1 Effect of multiple controls per case on sample 
size


From table 1.4, she needs 113 patients with pre-eclampsia for 90% power. 
Recruiting three controls per case, she can reduce this by a third (0.67), giving 
113 x 0.67 = 75.7 cases (76 in round figures). However, she will have to recruit 
three controls per case, giving 228 controls (76 x 3). Although this is pretty 
close to the size of study she would have had to do with a 1:1 case-control ratio, 
it will be quicker to carry out, because recruiting the cases will be the slowest 
part of the study. 


Reference

The calculations in this section were carried out with Stata, using formulas in 

Cousens SN, Feachem RG, Kirkwood B, Mertens TE and Smith PG. Case-control 
studies of childhood diarrhoea: II Sample size.World Health Organization. CDD/
EDP/88.3 Undated. 

A scanned version may be downloaded here: http://www.ircwash.org/resources/
case-control-studies-childhood-diarrhoea


Number of 
controls per 

case

Multiply the 
number of 
cases by

2 0.75

3 0.67

4 0.63

5 0.60
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1.4b Sample sizes for matched case-control studies

This section gives sample sizes for studies that compare cases of a disease or 
disorder with matched controls drawn from the same population.


Introduction

Case-control studies are widely used to establish the strength of the 
relationship between a risk factor and a health outcome. Case-control studies 
are observational studies. In experimental studies, we can hold conditions 
constant so that the only difference between the two groups we are comparing 
is that one was exposed to the risk factor and one was not. In observational 
studies, however, there can be other differences between those exposed to the 
risk factor and those not exposed. For example, if you are looking at the effect 
of diet on mild cognitive impairment, you would be aware that the main risk 
factor for cognitive impairment is age. Diet also varies with age. Age, then, is a 
factor which is associated with both the disease and the risk factor. These 
factors are called confounding factors. Confounding factors can distort the 
true relationship between a risk factor and a disease unless we take them into 
account in the design or the analysis of our study. 

We can deal with the presence of confounding variables in the design of our 
study by matching the cases and controls on key confounders. In matched case-
control designs, healthy controls are matched to cases using one or more 
variables. In practice, the most efficient matching strategy is to match 
on at most two variables. Matching on many variables makes it very difficult 
to locate and recruit controls. And although matching on many variables is 
intuitively attractive, it doesn’t actually increase statistical efficiency – in fact, 
matching on more than three variables actually reduces the power of your 
study to detect risk factor relationships. Altman recommends that “in a large 
study with many variables it is easier to take an unmatched control group and 
adjust in the analysis for the variables on which we would have matched, using 
ordinary regression methods. Matching is particularly useful in small studies, 
where we might not have sufficient subjects to adjust for several variables at 
once.” (Bland & Altman, 1994).

Matching cases and controls will produce a correlation between the probability 
of exposure within each case-control pair. This increases the statistical power 
of the study. The sample size will depend on the degree of correlation between 
the cases and controls. This is rarely possible to estimate, so these calculations 
are based on a case-control correlation of phi=0·2. This is the recommended 
action where the correlation is unknown (Dupont 1980). 

It is important to note that when you analyse a matched case-control study, you 
must incorporate the matching into the analysis using procedures like 
conditional logistic regression. Analysing it as an unmatched case-control study 
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biases the estimates of the risk factor effects in the directly of 1. In other 
words, calculated risk factor effects will be smaller than they really are.


Sample size calculation

1. What is the prevalence of the risk factor in the controls? The tables give 
possibilities of 10%, 20% 25%, 50% and 75%. If in doubt, select the estimate 
furthest from 50%. For example, if you think that the prevalence is somewhere 
between 10% and 20%, estimate sample size based on a 10% prevalence. 

2. What is the smallest odds ratio that would be of real life importance 
(clinically significant)? 

3. Look up the sample size for 90% and 95% power in the table. 


Smallest odds ratio that would be 
clinically significant

1.5 2 2.5 3 4 5

Prevalence 
of the risk 
factor

90% Power to detect the odds ratio

10% 1501 454 236 152 86 59

20% 885 279 150 100 59 43

30% 705 230 128 87 54 40

40% 644 217 124 86 55 41

50% 644 223 130 92 59 45

60% 697 248 147 105 69 54

70% 827 301 181 131 88 68

80% 1126 418 254 186 126 99

90% 2072 784 482 355 243 192

95% Power to detect the odds ratio

10% 1851 557 289 185 103 70

20% 1091 342 184 122 71 51

30% 869 283 156 106 65 47
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Table 1.4b Number of cases required for a matched case 
control study


Multiple controls per case

Where there are multiple controls per case, you can get greater statistical 
power. If you don’t have enough cases, you could consider this strategy. 
Recruiting two controls per case will reduce your case sample size by roughly 
25% for the same statistical power, and recruiting three controls per case will 
reduce it by roughly a third. However, the total size of your study will increase 
because of the extra controls. 


Table 1.4b1 Effect of multiple controls per case on sample 
size


40% 794 266 151 104 66 49

50% 794 274 158 111 71 54

60% 860 304 179 127 83 64

70% 1020 369 221 159 105 81

80% 1389 513 311 226 151 118

90% 2557 963 589 432 292 229

Number of 
controls per 

case

Multiply the 
number of 
cases by

2 0.75

3 0.67

4 0.63

5 0.60
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Example

A researcher wishes to conduct a matched case-control study of the effect of 
regular alcohol consumption on risk of falls in older people. She estimates that 
20% to 30% of the elderly population consume alcohol regularly. She decides 
that an odds ratio of 2.5 would be regarded as clinically significant. 

She uses the lower estimate of prevalence – 20% – for sample size calculation. 
She will require 150 case-control pairs to achieve 90% power. This is a very 
large number of falls patients, and she will only have a maximum of 60 patients 
available to her, so she realises that she will only reach 90% power to detect an 
odds ratio of 4. 

Recruiting 60 patients would take a long time, so she considers recruiting two 
controls for each patient, which would reduce the number of patients from 60 
to 45, though increasing the number of controls to 90.


Should you use a matched design?

Matched designs seem to offer advantages in being able to control for 
confounding variables. However, there are two points to be considered. The 
first is that a matched design will under-estimate the strength of the risk factor 
effect if it is analysed without taking the matching into account, so it is 
important to use an appropriate statistical technique (such as conditional 
logistic regression). 

More importantly, matching can make it hard to find controls. In many 
situations it is probably better to adjust for confounding variables statistically 
and use an unmatched case-control design.

However, there are two cases where matching can be beneficial:

1. There are strong, known risk factors that are not of interest. Variables like 
age, smoking, diabetes are well-studied and have strong effects on risk of many 
diseases. Matching on these variables can greatly increase study power 
(Stürmer 2000). However, one-to-one matching may be less efficient than 
frequency matching, and the paper by Stürmer et al is a useful read before you 
decide on a matching strategy.

2. Matching may be used to control for background variables that are hard to 
measure or are unknown. For example, in hospital studies time of admission 
may have a considerable effect on patient outcomes – patients admitted when 
the hospital is very busy may receive different treatment to those admitted 
when it is quiet. Matching cases and controls by time of admission can be used 
to control for these contextual variables. 
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These calculations were carried out using the Stata command sampsi_mcc, 
written by Adrian Mander, of the MRC Human Nutrition Research, Cambridge, 
UK.

A typical command is

sampsi_mcc , p0(.1) power(.9) solve(n) alt(4) phi(.2) m(1)

which sets the prevalence at .1, the power at 90%, the hypothesised odds ratio 
(alternative odds ratio) at 4 and asks Stata to solve the problem for N, the 
sample size. The command also includes two options that are not actually 
needed, since they are the defaults: phi, the correlation between case-control 
pairs, is set at 0.2 and the matching (m) is set to one control per case. 

The formulas are drawn from 

Dupont W.D. (1988) Power calculations for matched case-control studies. 
Biometrics 44: 1157-1168.
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1.5 Sample size for logistic regression with a 
continuous predictor variable

This section give guidelines for sample sizes for studies that measure the effect 
of a continuous predictor (for example, body mass index) on the risk of an 
endpoint (for example ankle injury). The data may come from a cross-sectional, 
case-control or cohort study. 


Introduction

Logistic regression allows you to calculate the effect that a predictor variable 
has on the occurrence of an outcome. It can be used with cross-sectional data, 
case-control data and longitudinal (cohort) data. The effect of the predictor 
variable is measured by the odds ratio. A researcher may be interested, for 
example, on the effect that body weight has on the probability of a patient not 
having a complete clinical response to a standard 70mg dose of enteric aspirin, 
or the effect that depression scores have on the probability that the patient will 
not adhere to prescribed treatment. 

Step 1: Variability : Estimate the mean and standard deviation of the 
predictor variable

You will probably be able to estimate the mean value quite easily. If you cannot 
find an estimate for the standard deviation, you can use the rule of thumb 
that the typical range of the variable is four standard deviations. By asking 
yourself what an unusually low and an unusually high value would be, you can 
work out the typical range. Dividing by four gives a rough standard deviation.

For example, adult weight averages at about 70 kilos, and weights under 50 or 
over 100 would be unusual, so the ‘typical range’ is about 50 kilos. This gives 
us a ‘guesstimate’ standard deviation of 12.5 kilos (50÷4). 

Step 2: Baseline: What is the probability of the outcome at the average 
value of the predictor?

A good rule of thumb is that the probability of the outcome at the average value 
of the predictor is the same as the probability of the outcome in the whole 
sample. So if about 20% of patients have poor adherence to prescribed 
treatment, this will do as an estimate of the probability of poor adherence at 
the average value of the predictor. 

Step 3: Effect size: what is the smallest increase in the probability of the 
outcome associated with an increase of one standard deviation of the 
predictor that would be clinically significant?

Clinical significance, or real-life significance, means that an effect is important 
enough to have real-life consequences. In the case of treatment failure with 
aspirin, if the probability of treatment failure increased from 10% at the 
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average weight to 25% one standard deviation higher, it would certainly be of 
clinical importance. Would an increase from 10% to 20% be clinically 
important? Probably. But any smaller increase probably would not. So in this 
case, we would set 10% and 20% as the prevalence at the mean and the 
smallest increase the be detected one standard deviation higher. 

Step 4. Read off the required sample size from the table. 


Table 1.5 Sample size for logistic regression

Prevalence at 
mean value

Prevalence 1 SD 
higher

Odds ratio N for 90% power

5% 10% 2.1 333
10% 15% 1.6 484
10% 20% 2.3 172
20% 25% 1.3 734
20% 30% 1.7 220
20% 40% 2.7 98
20% 50% 4.0 143
25% 30% 1.3 825
25% 35% 1.6 238
25% 40% 2.0 128
25% 50% 3.0 93
30% 35% 1.3 889
30% 40% 1.6 249
30% 50% 2.3 93
30% 60% 3.5 106
40% 45% 1.2 933
40% 50% 1.5 250
40% 60% 2.3 87
40% 80% 6.0 499
50% 55% 1.2 865
50% 60% 1.5 225
50% 75% 3.0 81
50% 80% 4.0 133
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Example

A researcher wishes to look at the effect of stigma on the risk of depression in 
medical patients. Previous research suggests that the prevalence of depression 
is about 20%. We can take this as the prevalence at the mean stigma score. The 
researcher wishes to be able to detect an increase in prevalence of 10% at one 
standard deviation above the mean value. She will need 172 patients to have a 
90% chance of detecting a relationship this strong. 


Reference: 

These calculations were carried out using the powerlog command written for 
Stata by Philip B. Ender, UCLA Institut for Digital Research and Education. 

The command is supported by an online tutorial at the IDRE website: http://
www.ats.ucla.edu/stat/stata/dae/logit_power.htm 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1.6 Sample sizes for logistic or Cox regression with 
multiple predictors

This section reviews guidelines on the number of cases required for studies in 
which logistic regression or Cox regression are used to measure the effects of 
risk factors on the occurrence of an endpoint. Earlier recommendations stated 
that you needed ten events (endpoints) per predictor variable. Subsequent 
work suggested that this isn’t strictly true, and that 5–9 events per predictor 
may be yield estimates that are just as good. However, the jury is still out. 

The section includes guidelines on designing studies with multiple predictors. 
There isn’t a table because the number of potential scenarios is impossibly big.


Introduction

Logistic regression builds a model the estimate the probability of an event 
occurring. We can use logistic regression where we have data in which each 
participant’s status is known: the event of interest has either occurred or has 
not occurred. For example, we might be analysing a case-control study of stress 
fractures in athletes. Stress fractures are either present (in the cases) or 
absent (in the controls). We can use logistic regression to analyse the data. Or 
we might be analysing data on whether or not a patient is prescribed an 
antibiotic for symptoms of the common cold. In this case, we know whether 
each patient was or was not prescribed an antibiotic. 

However, in follow-up studies, we often have data on people who might 
experience the event but they have not experienced it yet. For example, in a 
cancer follow-up study, some patients have experienced a recurrence of the 
disease, while others are still being followed up and are disease free. We 
cannot say that those who are disease free will not recur, but we know that 
their time to recurrence must be greater than their current follow-up time. This 
kind of data is called censored data. Censoring is where we do not know the 
exact value we are trying to measure, but we know that it has to be larger than 
(or smaller than) a particular value, or that it lies between two values (such as 
knowing that the person's age is between 45 and 54). 

Where we want to predict the risk of the occurrence of an event, but we have 
some censored observations, we can use Cox regression (sometimes called a 
proportional hazards general linear model, which is what Cox himself called it. 
You can see why people refer to it as Cox regression!). 


The ten events per predictor rule

There was a very influential paper published in the 1990s by Peduzzi et al 
(1996) based on simulation studies which concluded that for logistic regression 
you needed ten events (not patients) per predictor variable if you were 
calculating a multivariate model. 
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Example: a researcher wants to look at factors affecting the development of 
hypertension in first-time pregnancies. If the researcher has 5 explanatory 
variables, they will need to recruit a sample big enough to yield 50 cases of 
hypertension. Around 20% of first-time mothers will develop hypertension, so 
these 50 cases will be 20% of the required sample. So a total sample of 250 will 
be required so that there will be the required 50 cases 


More recent research has cast doubt on this rule

More recently, bigger and more comprehensive simulation studies have cast 
doubt on this hard-and-fast rule. Vittinghoff and McCulloch (2007), in a very 
widely-cited paper, concluded that “problems are fairly frequent with 2–4 
events per predictor variable, uncommon with 5–9 events per predictor 
variable, and still observed with 10–16 events per predictor variable. Cox 
models appear to be slightly more susceptible than logistic. The worst 
instances of each problem were not severe with 5–9 events per predictor 
variable and usually comparable to those with 10–16 events per predictor 
variable.”

In other words, with between 5 and 9 events per predictor variable, their 
models performed more or less as well as models with 10-16 events per 
variable. As a safe minimum, then, it appears that there should be at least 5 
events per predictor variable. 

Since then, further simulation studies where prediction models are validated 
against new datasets tend to confirm that 10 events per variable is a minimum 
requirement (see Wynants 2015) for logistic regression. These studies are 
important because they are concerned with the generalisability of findings. 

The importance of the number and type of predictor variables

The second factor that will influence sample size is the nature of the study. 
Where the predictor variables have low prevalence and you intend running a 
multivariable model with several predictors, then the number of events per 
variable required for Cox regression is of the order of 20. As you might 
imagine, increasing the number of predictor variables and decreasing their 
prevalence both require increases in the number of events per variable. 


Sample size requirements

Based on current research, the sample should have at least 5 events per 
predictor variable ideally 10. Sample sizes will need to be larger than this if 
you are performing a multivariate analysis with predictor variables that have 
low prevalences. In this case, you may require up to 20 events per variable, and 
should probably read the paper by Ogundimu et al. 
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Correlated predictors – a potential source of problems

One consideration needs to be mentioned: correlations between your predictor 
variables. If your predictor variables are uncorrelated, the required sample size 
will be smaller than if they are correlated. And the stronger the correlation, the 
larger the required sample size. Courvoisier (2011) points out that the size of 
the effect associated with the predictor and the correlations between the 
predictors all affect the statistical power of a study. And Kocak and colleagues, 
using simulation studies, report that the problem is especially significant in 
small samples. 

One solution to the problem is to design the analysis carefully. 

1. Choose predictor variables based on theory, not availability. It is better to use 
a small set of predictors that test an interesting hypothesis than to have a large 
number of predictors that were chosen simply because the data were there.

2. Make sure that predictors don’t overlap. If you put education and social class 
into a prediction model, they measure overlapping constructs. The well-
educated tend to have higher social class. Does your hypothesis really state 
that the two constructs have different effects? Choose one good measure of 
each construct rather than having multiple overlapping measures.


Frequently asked questions

That’s all very well but I have only 30 patients

That’s health research. I worked on what was, at the time, one of the world’s 
largest studies of a rare endocrine disorder. It has 16 patients. We are often 
faced with a lack of participants because we are dealing with rare problems or 
rare events. In such a case, we do what we can. What this section is warning is 
is that with rare conditions our statistical power is low. The only strategy in this 
case is the one outlined above: keep to a small, theoretically-justified set of 
predictors that have as little overlap as possible. And try and collaborate with 
other centres to pool data. 
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2: Sample sizes and powers  for comparing two 
means  where the variable is measured on a 

continuous scale that is (more or less) normally 
distributed.


This section give guidelines for sample sizes for studies that measure the 
difference between the means of two groups, or that compare the means of the 
same group measured under two different conditions (often before and after an 
intervention).


2.1 Comparing the means of two groups

Studies frequently compare a group of interest with a control group or 
comparison group. If your study involved measuring something on the same 
people twice, once under each of two conditions, you need the next section.

Step 1: Effect size: decide on the difference that you want to be able to 
detect

The first step in calculating a sample size is to decide on the smallest difference 
between the two groups that would be 'clinically significant' or 'scientifically 
significant'. For example, a difference in birth weight of 250 grammes between 
babies whose mothers smoked and babies whose mothers did not smoke would 
be certainly regarded as clinically significant, as it represents the weight gain 
of a whole week of gestation. However, a smaller difference – say 75 grammes – 
probably would not be. 

	 It is hard to define the smallest difference that would be clinically 
significant. An element of guesswork in involved. What is the smallest 
reduction in cholesterol that would be regarded as clinically worthwhile? It 
may be useful to search the literature and see what other investigators have 
done. And bear in mind that an expensive intervention will need to be 
associated with quite a large difference before it would be considered 
worthwhile. 

NB: Effect size should not be based on your hopes or expectations!

	 Note, however, that the sample size depends on the smallest clinically 
significant difference, not on the size of the difference you expect to find. You 
may have high hopes, but your obligation as a researcher is to give your study 
enough power to detect the smallest difference that would be clinically 
significant. 
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Step 2: Convert the smallest clinically significant difference to standard 
deviation units.

Step 2.1. What is the expected mean value for the control or comparison group?

Step 2.2. What is the standard deviation of the control or comparison group?

How to get an approximate standard deviation

If you do not know this exactly, you can get a reasonable guess by identifying 
the highest and lowest values that would typically occur. Since most values will 
be within ±2 standard deviations of the average, then the highest typical value 
(2 standard deviations above average) and lowest typical value (2 below) will 
span a range of four standard deviations. 

An approximate standard deviation is therefore


For example: a researcher is measuring fœtal heart rate, to see if mothers who 
smoke have babies with slower heart rates. A typical rate is 160 beats per 
minute, and normally the rate would not be below 135 or above 175. The 
variation in 'typical' heart rates is 175–135 = 30 beats. This is about 4 standard 
deviations, so the standard deviation is about 7.5 beats per minute. (This 
example is real, and the approximate standard deviation is pretty close to the 
real one!)

How to get an approximate standard deviation from a published confidence interval

Another potential source of standard deviation information is from published 
research. Although the paper may not include a standard deviation, it may 
include a confidence interval. The Cochrane Handbook has a useful formula for 
converting this to a standard deviation:


where N is the number of cases. 


Approximate 
SD =

Highest typical value –Lowest typical value

4

Standard 
deviation = √N

Upper CI limit – Lower CI limit

3·92
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Step 3. What is the smallest difference between the two groups in the 
study that would be considered of scientific or clinical importance? 

This is the minimum difference which should be detectable by the study. You 
will have to decide what is the smallest difference between the two groups that 
you are studying that would constitute a 'clinically significant difference' – that 
is, a difference that would have real-life implications.

In the case of the foetal heart rate example, a researcher might decide that a 
difference of 5 beats per minute would be clinically significant. 

Note again that the study should be designed to have a reasonable chance of 
detecting the minimum clinically significant difference, and not the difference 
that you think is actually there. 

Step 4. Convert the minimum difference to be detected to standard 
deviation units by dividing it by the standard deviation


Following our example, the minimum difference is 5 beats, and the standard 
deviation is 7.5 beats. The difference to be detected is therefore two thirds of a 
standard deviation (0.67)

Step 5: Use table 2.1 to get an idea of the number of participants you need in each group 
to detect a difference of this size. 

Following the example, the nearest value in the table to 0.67 is 0.7. The 
researcher will need two groups of 43 babies each to have a 90% chance of 
detecting a difference of 5 beats per minute between smoking and non-smoking 
mothers' babies. To have a 95% chance of detecting this difference, the 
researcher will need 54 babies in each group. 


Minimum difference to be detected

Standard deviation
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Table 2.1 Sample size for comparing the means of two 
groups


Sample Stata code for the first entries in this column:

power twomeans 0 (2 1.5 1.4 1.3 1.25 1.2 1.1 1), power(0.9)


If you intend using the Wilcoxon Mann-Whitney test, 

multiply the sample size by 1.16


Subgroup analysis : the effect of prevalence

Researchers often have to compare a subgroup of the sample with the 
remainder. For example, they may be interested in comparing folate intake in 
vegetarians and non-vegetarians using data from a population survey. Ideally, 
they would use a stratified random sample and recruit equal numbers of 
vegetarians and non-vegetarians. However is they are analysing a population 
survey, they will be faced with a situation in which the vegetarians are in a 
minority. 


Difference to 
be detected 
(SD units)

N in each 
group 90% 

power*

N in each 
group 95% 

power

Chance that someone in 
group 1 will score higher 
than someone in group 2

2 7 8 92%
1.5 11 13 86%
1.4 12 15 84%
1.3 14 17 82%

1.25 15 18 81%
1.2 16 20 80%
1.1 19 23 78%

1 23 27 76%
0.9 27 34 74%
0.8 34 42 71%

0.75 39 48 70%
0.7 44 55 69%
0.6 60 74 66%
0.5 86 105 64%
0.4 133 164 61%
0.3 235 290 58%

0.25 338 417 57%
0.2 527 651 55%
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Table 2.11 shows the effect on sample size of decreasing prevalence of a 
subgroup. 


As you can see from the table, the effect of reducing prevalence only really 
begins to bite as the prevalence drops below 20%. Effectively, your sample size 
needs to be an eighth bigger to compare a subgroup of 33% with the rest, a 
third bigger if the prevalence is 25%, half as big again if the prevalence is 20%, 
twice as big if the prevalence is 15% and three times as big if the prevalence is 
10%. The multipliers were taken by averaging the effect over a range of effect 
sizes between 0·2 and 1 standard deviations.


Stata code that generated the results in that table

power twomeans 0 (.2(.2)1), power(0.9) nratio(1(1) 4 5.6666667 9 19)


The pieces of code that have a list of numbers in brackets cause Stata to make 
one calculation for each of the numbers. You can write a list of numbers as a 
list (for example 4 5.6666667 9 19) or as a start number(an increment)an end 
number, as in (.2(.2)1), which means 'start with .2, increment by .2 until you 
reach 1. 


Frequently-asked questions

What is 90% or 95% power?

Just because a difference really exists in the population you are studying does 
not mean it will appear in every sample you take. Your sample may not show 
the difference, even though it is there. To be ethical and value for money, a 
research study should have a reasonable chance of detecting the smallest 
difference that would be of clinical significance (if this difference actually 
exists, of course). If you do a study and fail to find a difference, even though it 
exists, you may discourage further research, or delay the discovery of 

Prevalence of the smaller 
subgroup multiply total sample size by

33% 1.125
25% 1.33
20% 1.5
15% 1.95
10% 2.7
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something useful. For this reason, you study should have a reasonable chance 
of finding a difference, if such a difference exists. 

	 A study with 90% power is 90% likely to discover the difference between 
the groups if such a difference exists. And 95% power increases this likelihood 
to 95%. So if a study with 95% power fails to detect a difference, the difference 
is unlikely to exist. You should aim for 95% power, and certainly accept nothing 
less than 90% power. Why run a study that has more than a 10% chance of 
failing to detect the very thing it is looking for?

How do I interpret the column that shows the chance that a person in one 
group will have a higher score than a person in another group?

Some scales have measuring units that are hard to imagine. We can imagine 
fœtal heart rate, which is in beats per minute, but how do you imagine scores 
on a depression scale? What constitutes a 'clinically significant' change in 
depression score? 

	 One way of thinking of differences between groups is to ask what 
proportion of the people in one group have scores that are higher than average 
for the other group. For example we could ask what proportion of smoking 
mothers have babies with heart rates that are below the average for non-
smoking mothers? Continuing the example, if we decide that a difference of 5 
beats per minute is clinically significant (which corresponds to just about 0.7 
SD), this means that there is a 69% chance that a non-smoking mother's baby 
will have a higher heart rate than a smoking mother's baby. (Of course, if there 
is no effect of smoking on heart rate, then the chances are 50% – a smoking 
mothers' baby is just as likely to have higher heart rate as a lower heart rate). 

	 This information is useful for planning clinical trials. We might decide 
that a new treatment would be superior if 75% of the people would do better on 
it. (If it was just the same, then 50% of people would do better and 50% worse.) 
This means that the study needs to detect a difference of about 1 standard 
deviation (from the table). And the required size is two groups of 26 people for 
95% power.

	 The technical name for this percentage, incidentally, is the Mann-Whitney 
statistic. You will also encounter it as the c statistic, Harrell’s c, and even as the 
area under the ROC curve. 

I have a limited number of potential participants. How can I find out power 
for a particular sample size?

You may be limited to a particular sample size because of the limitations of 
your data. There may only be 20 patients available, or your project time scale 
only allows for collecting data on a certain number of participants. You can use 
the table to get a rough idea of the power of your study. For example, with only 
20 participants in each group, you have more than 95% power to detect a 
difference of 1.25 standard deviations (which only needs two groups of 17) and 
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slightly less than 90% power to detect a difference of 1 standard deviation (you 
would really need 2 groups of 22). 

But what if the difference between the groups is bigger than I think?

Sample sizes are calculated to detect the smallest clinically significant 
difference. If the difference is greater than this, the study's power to detect it is 
higher. For instance, a study of two groups of 43 babies has a 90% power to 
detect a difference of 0.7 standard deviations, which corresponded (roughly) to 
5 beats per minute, the smallest clinically significant difference. If the real 
difference were bigger – say, 7.5 beats per minute (1 standard deviation) then 
the power of the study would actually be 99.6%. (This is just an example, and I 
had to calculate this power specifically; it's not in the table.) So if your study 
has adequate power to detect the smallest clinically significant difference, it 
has more than adequate power to detect bigger differences.

I intend using a Wilcoxon (Mann Whitney) test because I don't think my 
data will be normally distributed

The first important point is that the idea that the data should be normally 
distributed before using a t-test, or linear regression, is a myth. It is the 
measurement errors that need to be normally distributed.  But even more 
important, studies with non-normal data have shown that the t-test is extremely 
robust to departures from normality (Fagerland, 2012; Fagerland, Sandvik, & 
Mowinckel, 2011; Rasch & Teuscher, 2007).

A second persistent misconception is that you cannot use the t-test on small 
samples (when pressed, people mutter something about “less than 30” but 
aren’t sure). Actually, you can. And the t-test performs well in samples as small 
as N=2! (J. de Winter, 2013) Indeed, with very small samples indeed, the 
Wilcoxon-Mann Whitney test is unable to detect a significant difference, while 
the t-test is (Altman & Bland, 2009).

Relative to a t-test or regression, the Wilcoxon test (also called the Wilcoxon 
Mann-Whitney U test) can be less efficient if your data are close to normally 
distributed. However, a statistician called Pitman showed that the test was 
never less than 86.4% as efficient. So inflating your sample by 1.16 should give 
you at least the same power that you would have using a t-test with normally 
distributed data. With data with skewed distributions, or data in which the 
distributions are different in the two groups, the Wilcoxon Mann-Whitney test 
can be more powerful than a t-test, so 

My data are on 5-point Likert scales and my supervisor says I cannot use a 
t-test because my data are ordinal

Simulation studies comparing the t-test and the Wilcoxon Mann-Whitney test on 
items scored on 5-point scales have given heartening results. In most scenarios, 
the two tests had a similar power to detect differences between groups. The 
false-positive error rate for both tests was near to 5% for most situations, and 
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never higher than 8% in even the most extreme situations. However, when the 
samples differed markedly in the shape of their score distribution, the Wilcoxon 
Mann-Whitney test outperformed the t-test (J. C. de Winter & Dodou, 2010).

Methods in Stata and R

The sample sizes were calculated using Stata Release 14, using the power 
command. The Mann-Whitney statistic was calculated using the mwstati 
command for Stata written by Rich Goldstein, and based on formulas in Colditz 
et al (1988) above.

You can also use the package pwr in R. The R code for the fœtal heart rate 
example, where we want to detect a difference of 0.67 standard deviations is

> pwr.t.test(n=NULL, d=.67,power=.9,type="two.sample")


     Two-sample t test power calculation 


              n = 47.79517

              d = 0.67

      sig.level = 0.05

          power = 0.9

    alternative = two.sided


NOTE: n is number in *each* group
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2.2 Sample sizes for comparing means in the same 
people under two conditions

One common experimental design is to measure the same thing twice, once 
under each of two conditions. This sort of data are often analysed with the 
paired t-test. However, the paired t-test doesn't actually use the two values you 
measured; it subtracts one from the other and gets the average difference. The 
null hypothesis is that this average difference is zero. 

So the sample size for paired measurements doesn't involve specifying the 
means for each condition but specifying the mean difference. 

Step 1: decide on the difference that you want to be able to detect.

The first step in calculating a sample size is to decide on the smallest difference 
between the two measurements that would be 'clinically significant' or 
'scientifically significant'. For example, if you wanted to see how effective an 
exercise programme was in reducing weight in people who were overweight, 
you might decide that losing two kilos over the one-month trial period would be 
the minimum weight loss that would count as a 'significant' weight loss.. 

	 It is often hard to define the smallest difference that would be clinically 
significant. An element of guesswork in involved. What is the smallest 
reduction in cholesterol that would be regarded as clinically worthwhile? It 
may be useful to search the literature and see what other investigators have 
done.

Effect size should not be based on your expectations!

	 Note, however, that the sample size depends on the smallest clinically 
significant difference, not, on the size of the difference you expect to find. 

Step 2: Convert the smallest clinically significant difference to standard 
deviation units.

Step 2.1. What is the standard deviation of the differences?

This is often very hard to ascertain. You may find some published data. Even if 
you cannot you can get a reasonable guess by identifying the biggest positive 
and biggest negative differences that would typically occur. The biggest 
positive difference is the biggest difference in the expected direction that 
would typically occur. The biggest negative difference is the biggest difference 
in the opposite direction that would be expected to occur. Since most values 
will be within ±2 standard deviations of the average, then the biggest positive 
difference (2 standard deviations above average) and biggest negative (2 
below) will span a range of four standard deviations. An approximate standard 
deviation is therefore
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For example: though we are hoping for at least a two kilo weight loss following 
exercise, some people may lose up to five kilos. However, others might actually 
gain as much as a kilo, perhaps because of the effect of exercise on appetite. So 
the change in weight can vary from plus five kilos to minus one, a range of six 
kilos. The standard deviation is a quarter of that range: one and a half kilos.

Step 2.2. Convert the minimum difference to be detected to standard deviation units by 
dividing it by the standard deviation


Following our example, the minimum difference is 2 kilos, and the standard 
deviation is 1.5 kilos. The difference to be detected is therefore one and a third 
standard deviations (1.33).

Step 3: Use table 2.2 to get an idea of the number of participants you 
need in each group to detect a difference of this size. 

Following the example, the nearest value in the table to 1.33 is 1.3. The 
researcher will need to study seven people to have a 90% chance of detecting a 
weight loss of 2 kilos following the exercise programme. To have a 95% chance 
of detecting this difference, the researcher will need 8 people. 


Approximate 
SD of 

differences
=

Biggest typical 
positive difference – Biggest typical 

negative difference

4

Minimum difference to be detected

Standard deviation of the difference
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Table 2.2 Sample sizes for comparing means in the same 
people under two conditions


Sample sizes for studies which compare mean values on the same people measured under 
two different conditions


*Stata code for this column:

power pairedmeans, sddiff(1) altdiff( 2 1.5 1.4 1.3 1.25 1.2 1.1 1 

0.9 0.8 0.75 0.7 0.6 0.5 0.4 0.3 0.25 0.2) power(0.9)
Note that the Stata code includes a list of values for the alternative hypothesis 
difference. Note also that you can run this command from the Stata menus and 
dialogues.


Difference 
to be 

detected 
(SD units)

N required 
for 90% 
power*

N required 
for 95% 
power

Percentage of people 
who will change in 
the hypothesised 

direction
2 5 6 98%

1.5 7 8 93%
1.4 8 9 92%
1.3 9 10 90%

1.25 9 11 89%
1.2 10 12 88%
1.1 11 13 86%

1 13 16 84%
0.9 16 19 82%
0.8 19 23 79%

0.75 21 26 77%
0.7 24 29 76%
0.6 32 39 73%
0.5 44 54 69%
0.4 68 84 66%
0.3 119 147 62%

0.25 171 210 60%
0.2 265 327 58%
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Frequently-asked questions

What is 90% or 95% power?

Just because a difference really exists in the population you are studying does 
not mean it will appear in every sample you take. Your sample may not show 
the difference, even though it is there. To be ethical and value for money, a 
research study should have a reasonable chance of detecting the smallest 
difference that would be of clinical significance (if this difference actually 
exists, of course). If you do a study and fail to find a difference, even though it 
exists, you may discourage further research, or delay the discovery of 
something useful. For this reason, you study should have a reasonable chance 
of finding a difference, if such a difference exists. 

	 A study with 90% power is 90% likely to discover the difference between 
the two measurement conditions if such a difference exists. And 95% power 
increases this likelihood to 95%. So if a study with 95% power fails to detect a 
difference, the difference is unlikely to exist. You should aim for 95% power, 
and certainly accept nothing less than 90% power. Why run a study that has 
more than a 10% chance of failing to detect the very thing it is looking for?

How do I interpret the column that shows the percentage of people who will change in 
the hypothesised direction?

Some scales have measuring units that are hard to imagine. We can imagine 
foetal heart rate, which is in beats per minute, but how do you imagine scores 
on a depression scale? What constitutes a 'clinically significant' change in 
depression score? 

	 One way of thinking of differences between groups is to ask what 
proportion of the people will change in the hypothesised direction. For example 
we could ask what proportion of depressed patients on an exercise programme 
would have to show improved mood scores before we would consider making 
the programme a regular feature of the management of depression. If we 
decide that a we would like to see improvements in at least 75% of patients, 
then depression scores have to fall by 0.7 standard deviation units. The sample 
size we need is 22 patients for 90% power, 27 for 95% power (the table doesn't 
give 75%, I've used the column for 76%, which is close enough).  

	 The technical name for this percentage, incidentally, is the Mann-Whitney 
statistic.

I have a limited number of potential participants. How can I find out power for a particular 
sample size?

You may be limited to a particular sample size because of the limitations of 
your data. There may only be 20 patients available, or your project time scale 
only allows for collecting data on a certain number of participants. You can use 
the table to get a rough idea of the power of your study. For example, with only 
20 participants, you have more than 90% power to detect a difference of 0.75 
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standard deviations (which only needs two groups of 17) and slightly less than 
95% power to detect a difference of 0.8 standard deviations (you would really 
need 21 participants). 

But what if the difference is bigger than I think?

Sample sizes are calculated to detect the smallest clinically significant 
difference. If the actual difference is greater than this, the study's power to 
detect it is higher.


Reference and methods

These calculations were carried out using Stata release 15 with the power 
command

You can also use the pwr package in R. Here is the calculation for a difference 
of 0.5 standard deviations with 90% power. 


 pwr.t.test(n=NULL, d=.5,power=.9,type="paired")


     Paired t test power calculation 


              n = 43.99548

              d = 0.5

      sig.level = 0.05

          power = 0.9

    alternative = two.sided


NOTE: n is number of *pairs* 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2.3 Calculating sample sizes for comparing two 
means: a rule of thumb

Sample size for comparing two groups

Gerald van Belle gives a good rule of thumb for calculating sample size for 
comparing two groups. You do it like this:

1. Calculate the smallest difference between the two groups that would be of 
scientific interest.

2. Divide this by the standard deviation to convert it to standard deviation units 
(this is the same two steps as before)

3. Square the difference

4. For 90% power to detect this difference in studies comparing two groups, 
the number you need in each group will be 


Round up the answer to the nearest whole number.

5. For 95% power, change the number above the line to 26.

Despite being an approximation, this formula is very accurate. 


Studies comparing one mean with a known value

If you are only collecting one sample and comparing their mean to a known 
population value, you may also use the formula above. In this case, the formula 
for 90% power is 


Round up the answer to the nearest whole number.

For 95% power, replace the number 11 above the line by 13.

See the links page at the end of this guide for the source of these rules of 
thumb. 

21

(Difference)2

11

(Difference)2
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3.1 Sample size for correlations or regressions 
between two variables measured on a numeric scale


This section give guidelines for sample sizes for studies that measure the 
relationship between two numeric variables. Although these sample sizes are 
often based on correlations, they can also be applied to linear regression, and 
both types of measure are shown in the table. 


Introduction : correlation and regression

Correlations are not widely used in medicine, because they are hard to 
interpret. One interpretation of a Pearson correlation (r) can be got by squaring 
it: this gives the proportion of variation in one variable that is linked to 
variation in another variable. For example, there is a correlation of 0.7 between 
illness-related stigma and depression, which means that just about half the 
variation in depression (0.49, which is 0.72) is linked to variation in illness-
related stigma. 

Despite the fact that correlations are measured on a continuous scale, 
researchers often try to make them more interpretable by converting them to 
what have been called, unkindly, tee-shirt sizes : small, medium and large. They 
do this referencing the work of Cohen (1992) , who recommended Pearson r 
values of 0.10, 0.30, and 0.50 to demarcate small, medium, and large effects, 
respectively. However, recent research has cast doubt on this classification. A 
major review of studies by Gignac and Szodorai (2020) based on 708 meta-
analytically derived correlations, reported that the 25th, 50th, and 75th 
percentiles corresponded to correlations of 0.11, 0.19, and 0.29, respectively. 
Fewer than 3% of correlations met Cohen's definition of "large". They suggest 
that in real life, the terms small, medium and large more closely correspond to 
correlations of 0.10, 0.20 and 0.30. 

Regressions are much more widely used, since they allow us to express the 
relationship between two variables in natural units – for example, the effect of 
a one-year increase in age on blood pressure. Because regressions are 
calculated in natural units, people often cite the proportion of variation shared 
between the two variables. 

In fact, correlation is just an alternative form of reporting the results of a 
regression, so the p-value for a regression will be the same as the p-value for a 
Pearson correlation. 
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Steps in calculating sample size for correlation or regression

Step 1: How much variation in one variable should be linked to variation in 
the other variable for the relationship to be clinically important?

This is hard to decide, but it is hard to imagine a correlation being of 'real life' 
importance if less than 20% of the variation in one variable is linked to 
variation in the other variable. 

Step 2: Use the table to look up the corresponding correlation and sample 
size
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Table 3.1

Sample sizes for Pearson's r correlation and for simple regression based on 

percentage of shared variance


*Stata command for this column:

power onecorrelation 0 (0.32 0.39 0.45 0.5 0.55 0.59 0.63 0.67 
0.71), power(0.9)


Reference

These calculations were carried out in Stata 15 with the command power

Cohen J. A power primer. Psychological bulletin. 1992 Jul;112(1):155.

Gignac, G., Szodorai, E. (2016). Effect size guidelines for individual differences 
researchers Personality and Individual Differences  102(Personality and 
Individual Differences5472013), 74-78. https://dx.doi.org/10.1016/
j.paid.2016.06.069


% Shared 
variation

Correlation Sample size 90% 
power*

Sample size 95% 
power

10% 0.32 99 122
15% 0.39 65 80
20% 0.45 48 59
25% 0.5 38 47
30% 0.55 31 37
35% 0.59 26 32
40% 0.63 23 27
45% 0.67 19 23
50% 0.71 17 20
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3.2 Sample size for correlations based on the desired 
confidence interval

Introduction

Another approach to sample size for correlations is to decide on the degree of 
precision you want to measure the correlation with. Do you want to measure it 
to a margin of error of ±0·2? ±0·05? The table gives required sample sizes. It is 
also probably useful for determining the approximate power of your study if 
you know the likely sample size.

You can use this method to set a maximum confidence interval for your study, 
but you can also use it as a test of whether the correlation is bigger (or smaller) 
than a specified value. 


Steps in calculating sample size for correlation based on 
confidence interval width

Step 1 : Decide what size correlation you want to be able to detect

You need to decide on the size of correlation that your study should be capable 
of detecting. This should be the smallest correlation that has real-life or clinical 
significance. You can base this on the percentage of variance that the variables 
share, in which case you should use table 3.2.1 for your sample size estiate, or 
you can base it on the size of the correlation, in which case you can use table 
3.2.2.

Step 2a : Decide on the maximum width of the confidence interval

This is the widest margin of uncertainty that you would be prepared to accept. 
You can do this based on the absolute margin of error you would like – you 
might decide you would like correlations measured with a confidence interval 
of at most ±0·1. 

Step 3b : Alternatively, decide on what is an unacceptably low correlation

There is a second way you might set the width of the confidence interval is by 
deciding what would be an unacceptably low correlation. An unacceptably low 
correlation is the largest correlation that is still too small to have any real-life 
or clinical importance. 

Subtract this correlation from the correlation you want to be able to detect. 
This gives you the maximum width of the confidence interval.
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Step 3 : Use the tables to corresponding sample size


Table 3.2.1

Sample sizes for correlations based on % shared variation


Table 3.2.2

Sample sizes for correlations based on absolute size of correlation


Examples

Sample size based on confidence interval

A researcher wants to correlate oral health literacy with oral health quality of 
life. However, they are both measured by short questionnaires which will have 
a limited reliability (in other words, a significant percentage of the variation in 
scores will be error variation rather than being true variation in health literacy 

% Shared 
variation

Correlation Margin of 
error

±0·2 

Margin of 
error

±0·15 

Margin of 
error

±0·1 

10% 0.32 79 139 311
15% 0.39 71 125 278
20% 0.45 64 111 247
25% 0.5 57 99 219
30% 0.55 50 86 190
35% 0.59 44 76 167
40% 0.63 39 66 144
45% 0.67 33 56 121
50% 0.71 28 47 99

% Shared 
variation

Correlation Margin of 
error

±0·2 

Margin of 
error

±0·15 

Margin of 
error

±0·1 

9% 0.3 81 143 320
16% 0.4 70 123 273
25% 0.5 57 99 219
36% 0.6 43 74 161
49% 0.7 30 49 105
64% 0.8 18 28 56
81% 0.9 8 10 16
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or quality of life). For this reason, even a correlation of 0·4 (meaning that 16% 
of the variation in oral health quality of life is linked with variation in oral 
health literacy) would be of real life importance. She would ideally like to 
measure this with a precision of ±0·1. 

From table 3.2.2, she will need 87 participants to achieve a 95% confidence 
interval of ±0·1. 


Methods 

These correlations were calculated in R, using the library 
userfriendlyscience.

Table 3.2.3 was produced from a single R command, after loading the package

library("userfriendlyscience")

pwr.confIntR(seq(.3, .9, by = .1), w=seq(.2, .05,b=-.05))


Reference

Moinester, M., & Gottfried, R. (2014). Sample size estimation for correlations 
with pre-specified confidence interval. The Quantitative Methods of Psychology, 
10(2), 124-130.
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3.3 Sample sizes for Kendall's tau-b correlation

Spearman's rho is often used as a correlation for data measured on ordinal 
scales. However, it has a major disadvantage : it's pretty much impossible to 
explain what it measures. You cannot translate a rho of, say, 0·7 into some 
interpretable measure of the size of the effect.

On the other hand, Kendall's tau-b has an actual interpretation – that is, you 
can convert it into a measure of effect size. The idea behind tau-b is simple and 
ingenious. If you were to take a pair of observations, what is the probability 
that they would show a positive correlation. That is, what is the probability that 
the observation with the higher value on one variable would also have the 
higher value on the other?

The correlation is calculated by first getting the proportion of pairs of 
observations showing a positive correlation – this will fall between zero and 
one. Multiplying this by two gives it a range of 0 to 2, and subtracting 1 
changes the range so that it runs from —1 to +1. 


Step 1 : decide on the effect size you want to measure

You can base a sample size for tau on this effect size. What proportion of pairs 
of observations should show a positive correlation? 


Step 2 : decide on the precision you want

The precision of the correlation is measured by its 95% confidence interval. 
The table presents confidence intervals of ±0·2, ±0·15 and ±0·1. Bear in mind 
that a confidence interval of ±0·1 is 0·2 units wide. That's probably as 
imprecise as you would want to go.


Step 3 : locate the effect size and value of tau from the 
table  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Table 3.3

Sample size required for a confidence interval of a given size around a 

measured Kendall's tau-b correlation


Methods

The calculations were made with the presize package for R. The reference is 

Armando Lenz and Alan G. Haynes and Andreas Limacher. presize: Precision 
Based Sample Size Calculation. R package version 0.2.3, 2021. https://CRAN.R-
project.org/package=presize


The right hand column of the table can be calculated with these R commands:

library(presize)

prec_cor(seq(.3, .75, by=.05),conf.width = .1, method="kendall")


% pairs of 
observations 

positively 
correlated

Kau-b 
correlation

N for 
confidence 

interval width

0·2 

N for 
confidence 

interval width

0·15 

N for 
confidence 

interval width

0·1 

65% 0.30 143 251 560
68% 0.35 133 234 521
70% 0.40 122 214 478
73% 0.45 111 194 431
75% 0.50 99 172 382
78% 0.55 86 150 331
80% 0.60 73 127 280
83% 0.65 61 104 229
85% 0.70 49 83 180
88% 0.75 37 62 134
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4. Sample size for reliability studies

This section give guidelines for sample sizes for studies that measure 
Cronbach’s alpha, an index of the reliability – strictly speaking the internal 
consistency – of a set of items designed to measure a trait. The topic of scale 
development is a complex one, so the section gives guidance on the 
methodology of analysis and the interpretation of alpha.


Introduction : An apology

I wish there were a simple answer to this problem, and there isn’t. Please read 
the following carefully.


Cronbach’s alpha

The reliability of a measurement scale is the degree to which all the items 
measure the same thing. Reliability is specific: it describes the performance of 
a scale in a specific population tested under specific conditions. So it is 
important to make sure that scales are reliable when used in realistic 
conditions with realistic participants. 

In developing a new measurement scale, or showing that a measurement scale 
works in a new setting, it is useful to measure its reliability. Reliability is 
usually measured using Cronbach's alpha coefficient, which is scaled between 
zero and one, with zero meaning that the items in the scale have nothing in 
common and one meaning that they are all perfectly correlated. In practice, it 
is wildly unlikely that anyone would develop a scale in which all the items were 
unrelated, so there is no point in testing whether your reliability is greater than 
zero. Instead, you have to specify a minimum value for the reliability 
coefficient. 


Myths about Cronbach’s alpha

A mythology has grown up around the interpretation of Cronbach’s alpha, 
based, apparently, on the published work of Nunally (1978). According to this 
myth, Nunally advocated an alpha of 0·7 as indicating a scale that was 
acceptable for use in research. In fact, it’s worth quoting Nunally’s paper, 
which offers a much more nuanced and thoughtful approach to the question:


“What a satisfactory level of reliability is depends on how a measure is being 
used. In the early stages of research … one saves time and energy by working 
with instruments that have only modest reliability, for which purpose 
reliabilities of .70 or higher will suffice… In contrast to the standards in basic 
research, in many applied settings a reliability of .80 is not nearly high enough. 
In basic research, the concern is with the size of correlations and with the 
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differences in means for different experimental treatments, for which purposes 
a reliability of .80 for the different measures is adequate.” 

“In many applied problems, a great deal hinges on the exact score made by a 
person on a test… In such instances it is frightening to think that any 
measurement error is permitted. Even with a reliability of .90, the standard 
error of measurement is almost one-third as large as the standard deviation of 
the test scores. In those applied settings where important decisions are made 
with respect to specific test scores, a reliability of .90 is the minimum that 
should be tolerated, and a reliability of .95 should be considered the desirable 
standard.”


This extensive quotation is from Lance, C.E., Butts, M.M. & Michels, L.C., 2006. 
The Sources of Four Commonly Reported Cutoff Criteria: What Did They Really 
Say? Organizational Research Methods, 9(2), pp.202–220.

So bear in mind that mindlessly setting a desired alpha of 0·7 and citing 
Nunally’s original paper is wrong. He didn’t say anything like that. And, 
second, that you need to consider carefully the context of your research in 
setting a minimum alpha. 


Alpha only applies to unidimensional scales

One of the statistical assumptions underlying alpha is that the scale is 
unidimensional. That is to say, that all the items measure the same thing, and 
that their failure to correlate perfectly is due to measurement error. So an 
important part of scale development is making sure that your items are indeed 
unidimensional. 


How many cases should a reliability study have?

The standard advice is to have at least 10 participants per item on your scale. 
However, this should be regarded as the bare minimum. 

There are surprising differences of opinion in the literature, however, on how 
small your sample can be. The best current advice is based on simulation 
studies where authors have studied the power of samples of various sizes to 
detect a given alpha.

Simulation studies indicate that sample size depends on the structure of your 
scale. Sample sizes as small as 30 can measure alpha reliably so long as the 
scale items have strong inter-correlations. 

First step : principal components analysis

Your analysis should begin with a principal components analysis. A principal 
components analysis identifies underlying ‘dimensions’ that account for the 
variation in a set of items. In the case of reliability, you should only examine the 
first principal component. There is a good reason for this: alpha has no 
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interpretation when scales combine items that measure different constructs. 
The first principal component measures the degree to which the items measure 
the same construct. 

Samuels (2015), summarising the literature, makes these recommendations

1. Don’t run reliability analysis with less than 30 participants

2. If you have between 30 and 50 participants, remove items that have loadings 
of less than 0·4 on the first principal component. This means that that very 
little of the variation in the responses to that item are shared with the other 
scale items. 

3. Rerun the principal components analysis and examine the first eigenvalue 
(the eigenvalue for the first principal component). If this is less than 6, do not 
attempt a reliability analysis; the items just don’t show enough homogeneity to 
yield a reliable estimate of alpha. 

4. Ideally, scale items should have a loading of 0·8 or more on the first principal 
component. Items between 0·4 and 0·8 need to be considered carefully as 
candidates for inclusion. 

5. If your sample size is between 50 and 100, then follow the same steps, but if 
your eigenvalue falls between 3 and 6, then only perform a reliability analysis if 
the sample size is at least 75. See Yurdugül (2008) for details of how these 
figures are arrived at. 


References

Lance, C.E., Butts, M.M. & Michels, L.C., 2006. The Sources of Four Commonly 
Reported Cutoff Criteria: What Did They Really Say? Organizational Research 
Methods, 9(2), pp.202–220.


Samuels, P., 2015. Statistical Methods – Scale reliability analysis with small 
samples, Birmingham City University, Centre for Academic Success. DOI: 
10.13140/RG.2.1.1495.5364. https://www.researchgate.net/publication/
280936182_Advice_on_Reliability_Analysis_with_Small_Samples


Yurdugül, H., 2008. Minimum sample size for Cronbach's coefficient alpha : a 
Monte-Carlo study. Hacettepe University Journal of Education, 35, pp.397–405. 
http://www.efdergi.hacettepe.edu.tr/200835HALİL%20YURDUGÜL.pdf
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5. Sample size calculation for agreement between 
two raters using a present/absent rating scale using 
Cohen’s Kappa

This section give guidelines for sample sizes for studies that use the kappa 
coefficient to measure the agreement between two raters who make ratings of 
present/absent. 


Introduction

Studies looking at the agreement between raters come in many shapes and 
sizes. The most basic design is where two raters are asked to rate the presence 
or absence of a particular feature or quality. Kappa is a statistic that measures 
the degree of agreement over and above the agreement you would expect by 
chance. You can see why just measuring percentage agreement is not enough. 
If you toss two coins, they will agree 50% of the time just by chance. Likewise, 
two raters, each of whom rates a feature as present 50% of the time will agree 
with each other by chance 50% of the time. 

When we are studying agreement, we have to choose a null hypothesis. 
Normally, the null hypothesis says that the data arose by chance – that there is 
no actual relationship between the variables we are studying. However, this 
makes no sense at all when we are studying agreement. It would be ridiculous 
to set up a scientific study to determine whether the agreement between two 
pathologists was better than chance! When two raters rate the same thing, it 
would be unusual to find that they didn’t agree any more than you would 
expect by chance, even in psychiatry. 

So in studies of agreement, we have to set a minimum level of agreement that 
we want to outrule in our study. Usually we would like to outrule a level of 
agreement that would suggest that there was a significant problem with the 
reliability of the rating. So unlike other sample size methods, the researcher 
will have to base sample size calculation for kappa on two figures: the value of 
kappa to be outruled and the likely true value of kappa. In addition, the 
prevalence of the feature will affect sample size. 


Estimating sample size for kappa

The sample size will depend on three factors:

Step 1: Prevalence of the feature

What is the approximate prevalence of the feature that is being rated? Sample 
sizes will be smallest when there is a 50% prevalence, and will get very large 
when the prevalence drops much below 25%. 
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In the calculations below, we assume that there is no systematic difference 
between the raters. In other words, that each rater gives more or less the same 
prevalence of the feature. Where you suspect that raters will give different 
prevalences, the sample size calculation needs to take this into account, and is 
well beyond the scope of this guide. However, the R package I used will 
perform the calculation (see below). 

Step 2 : Definition of an unacceptably low level of agreement (null value)

It would be astonishing if two raters could not agree any more than you would 
expect by chance. So in designing the study we have to stipulate what would be 
an unacceptably low level of agreement. This will act as a baseline against 
which we can assess the actual level of agreement. Because this is the level of 
agreement that we wish to outrule, the value is often called the null value, or 
null hypothesis value.

In practice, a kappa of 0.2–0.40 is regarded as a fair level of agreement, 0.41–
0.60 as moderate, 0.61–0.80 as substantial and anything above 0·8 as excellent. 
That said, these cutpoints have a sort of folkloric status, and the interpretation 
of kappa is probably best done in the context of the decision that it supports. 

In the tables that follow I will tabulate sample sizes for kappa in cases where 
you want to demonstrate that kappa is better than 0·4 (so agreement is better 
than ‘fair’), better than 0·5 or 0·6 (better than ‘moderate’) and better than 0·7 
and 0·8 (better than ‘substantial). 

Step 3 : Effect size - what is a clinically acceptable level of agreement?

What is the level of agreement that you think should be present if the test is a 
reliable test? This value is often called the alternative value or alternative 
hypothesis value, in contrast with the null value. 

For example, if the test would require substantial agreement between 
assessors rather than simply being moderate, then you might set up your 
sample size to detect a kappa of 0·75 against a null hypothesis that kappa is 
0·6. This would require 199 ratings made by the two raters to achieve 90% 
power. However, if you hypothesised that kappa was 0·75, as before, but 
wanted to outrule a kappa of 0·5, the required sample size drops to a very 
manageable 78. 
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Sample sizes for kappa for two raters

Prevalence of 

feature
Hypothesised 

kappa
Kappa to be 

outruled (null 
hypothesis kappa)

90% 
power

95% 
power

0·5 0.6 0.4 156 200

0.7 0.5 131 169

0.8 0.6 102 133

0.7 0.45 87 112

0.8 0.55 68 90

0.8 0.5 49 65

0·4 or 0·6 0.6 0.4 162 208

0.7 0.5 137 177

0.8 0.6 106 139

0.7 0.45 90 117

0.8 0.55 71 94

0.8 0.5 51 68

0·25 or 0·75 0.6 0.4 207 265

0.7 0.5 176 227

0.8 0.6 137 180

0.7 0.45 116 150

0.8 0.55 92 121

0.8 0.5 66 87

0·1 to 0·9 0.6 0.4 427 546

0.7 0.5 371 479

Sample Size: Kappa

64



Example

A researcher wishes to study the agreement between family doctors on 
whether or not to prescribe an antibiotic for uncomplicated rhinitis. The 
prevalence of antibiotic prescribing is about 25%. She would like to show that 
the kappa value for agreement is better than 0·5. She hypothesises that the 
true kappa might be between 0·7 and 0·8. 

Looking at the table, if the true kappa is 0·7, she will need to compare the 
doctors’ ratings for 176 patients to have a 90% power to outrule a kappa as low 
as 0·5. On the other hand, if the true kappa is 0·75, she would have 90% power 
to outrule a kappa as low as 0·45 with a sample of 116.


Limitations of these tables

There are so many potential combinations of prevalence, kappa-to-be-outruled 
and hypothesised kappa that these tables can only give an approximate idea of 
the numbers involved. And they don’t cover cases where the two raters have 
different prevalences (which would indicate systematic disagreement!), or 
where there are more than two raters etc. To get precise calculations for a 
wide variety of scenarios, I recommend using the R package irr. 


Reference

These sample sizes were calculated with the N.cohen.kappa command in the 
irr package in R. The command uses a formula published in

Cantor, A. B. (1996) Sample-size calculation for Cohen's kappa. Psychological 
Methods, 1, 150-153.

The sample sizes in the table were produced using variations on this command:

N.cohen.kappa(0.1, 0.1, 0.5, 0.8,power=.95)


0.8 0.6 292 382

0.7 0.45 242 313

0.8 0.55 194 255

0.8 0.5 139 183

Prevalence of 
feature

Hypothesised 
kappa

Kappa to be 
outruled (null 

hypothesis kappa)

90% 
power

95% 
power
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Sample size for intraclass correlations

This section give guidelines for sample sizes for studies that use the intraclass 
correlation coefficient to measure the agreement between two or more raters 
who make ratings on a continuous scale.


First, you should note that to measure agreement you do not calculate a 
standard correlation. Think about it : if you measure distance in miles and 
kilometres the readings will not agree unless the distance is zero. Nevertheless 
they will correlate perfectly. The correlation that you need is called an 
intraclass correlation.

There are, confusingly, three types of intraclass correlation and each of them 
comes in two separate forms that measure absolute and relative agreement. A 
discussion of what each one measures is beyond a sample size guide. I take it 
that you know which one you want, and simply want a sample size.

The table presents sample sizes for intraclass correlations based on an 
approximate formula published by Bonett (see references)

They are calculated in R, using the presize package. 


Step 1 How big do you expect the intraclass correlation to be?

The smaller the intraclass correlation you expect, the larger the sample size 
required to detect it. In practice, worthwhile intraclass correlations are going 
to be bigger than 0·6. 


Step 2 How much precision do you need in measuring it?

Your study will estimate the intraclass correlation and its confidence interval. 
What is the maximum size of the confidence interval that is allowable? In other 
words, how big does the confidence interval have to be before the study is too 
imprecise to be of any practical use?

High-precision studies (with a confidence interval of, say, ±0·05 around the 
intraclass correlation) require very large numbers of participants. In the table, 
confidence intervals of ±0·1 and ±0·15 are shown. Confidence intervals bigger 
than ±1·5 are probably too imprecise. 


Step 3 How many raters will you use?

This is a design question. Are you specifically interested in two particular 
raters, or do you want to take a random sample of raters from the population. 
Sample size will go down with larger numbers of raters, and study 
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generalisability will go up because you have a bigger sample from the pool of 
potential raters. 


Number of raters Hypothesised 
intraclass correlation

Precision ±0·1 Precision ±0·15

2

0.65 514 229

0.70 405 183

0.75 299 136

0.80 205 94

0.85 124 58

0.90 61 31

4

0.65 275 123

0.70 223 100

0.75 171 77

0.80 120 54

0.85 74 34

0.90 37 17

10

0.65 198 89

0.70 165 74

0.75 130 58

0.80 93 42

0.85 59 27

0.90 30 14
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R code used to produce this table :

library(presize)

rh <- c(.65,.7,.75,.8,.85,.9)

prec_icc(rh,2, conf.width = .1)

prec_icc(rh,2, conf.width = .15)

prec_icc(rh,4, conf.width = .1)

prec_icc(rh,4, conf.width = .15)

prec_icc(rh,10, conf.width = .1)

prec_icc(rh,10, conf.width = .15)


References 

Haynes AG, Lenz A, Stalder O, Limacher A. presize: An R-package for precision-
based sample size calculation in clinical research. Journal of Open Source 
Software. 2021 Apr 14;6(60):3118.

Bonett DG (2002). A Sample size requirements for estimating intraclass 
correlations with desired precision. Statistics in Medicine, 21:1331-1335. 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6. Sample size for pilot studies

Introduction

The sample size methods used so far presuppose that the investigator has some 
kind of knowledge that can be used to make informed guesses about such 
things as prevalences, effect sizes etc. However, by their very essence pilot 
studies are carried out when the researcher is facing the unknown. Even so, 
there are some general principles which can be applied to ensure that enough 
data are captured by a pilot study to inform subsequent study design with the 
smallest use of resources. 


Sample size: the law of diminishing returns

Sample size for pilot studies starts with the observation that each participant 
that you recruit into a study yields less information than the last one. This law 
of diminishing returns can be used to define a point beyond which recruiting 
additional participant will yield minimal improvement in estimating effects. 
Calculations by Julious (2005) and Van Belle (2008) both show that in studies 
that compare the means of two groups, if you carry on recruitment beyond a 
sample size of 12 per group the effect of each additional participant on the 
precision is minimal. If your pilot study is purely exploratory and your aim is to 
get a preliminary estimate of the difference between two groups, then a sample 
size of 12 per group can be justified on the basis of these references.


Sample size to justify carrying out a full study

Sometimes there are cases when the investigator will have a preliminary 
estimate of the minimum difference between groups that would constitute a 
clinically significant difference. The purpose of the pilot study is to justify 
carrying out a full study. For example, before conducting a study of the effects 
of a physiotherapy programme on balance in the elderly, the investigators 
might be required to do a pilot to show that there were grounds for believing 
that such a programme would produce a clinically significant improvement in 
balance. 

Cocks et al (2013) provide an algorithm for estimating the size of a pilot study 
that will give the ‘go-ahead’ to a main study. Their rule of thumb, based on 
calculated sample sizes for various scenarios, is to recruit 9% of of the 
projected final sample, or 20 participants, whichever is the greater, as a pilot. If 
there is no difference between the groups, then it is unlikely that the true effect 
size is as large as the one specified by the investigators. Note that this 
conclusion is based on an 80% confidence interval, not the usual 95%. If you 
are using this method, please read Cocks’ paper for further detail and worked 
examples. 
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Method

Calculate the sample size from section 2.1.

Use 9% of this sample size or 20 participants, whichever is the greater

If, when you analyse the pilot study, there is no significant difference between 
the groups, it is unlikely that the effect size reaches clinical significance. 


References

Cocks, K. & Torgerson, D.J., 2013. Sample size calculations for pilot randomized 
trials: a confidence interval approach. Journal of Clinical Epidemiology, 66(2), 
pp.197–201.

Julious, S.A., 2005. Sample size of 12 per group rule of thumb for a pilot study. 
Pharmaceutical Statistics, 4(4), pp.287–291. Available at: http://
onlinelibrary.wiley.com/doi/10.1002/pst.185/abstract.

van Belle, G., 2008. Sample Size. In Statistical Rules of Thumb. Wiley, 
Chichester. pp. 27–51. Download from http://vanbelle.org/chapters/
webchapter2.pdf
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7. Sample size for animal experiments in which not 
enough is known to calculate statistical power


In animal experiments, the investigator may have no prior literature to turn to. 
The potential means and standard deviations of the outcomes are unknown, 
and there is no reasonable way of guessing them. In a case like this, sample 
size calculations cannot be applied. 


The resource equation method

The resource equation method can be used for minimising the number of 
animals committed to an exploratory study. It is based on the law of diminishing 
returns: each additional animal committed to a study tells us less than the one 
to reach the threshold where adding further animals will be uninformative. It 
should only be used for pilot studies or proof-of-concept studies. 

Applying the resource equation method

1. How many treatment groups will be involved? Call this T.

2. Will the experiment be run in blocks? If so, how many blocks will be used? 
Call this B

A block is a batch of animals that are tested at the same time. Each block may 
have a different response because of the particular conditions at the time they 
were tested. Incorporating this information into a statistical analysis will 
increase statistical power by removing variability between experimental 
conditions on different days. 

3. Will the results be adjusted for any covariates? If so, how many? Call this C

Covariates are variables that are measured on a continuous scale, such as the 
weight of the animal or the initial size of the tumour. Results can be adjusted 
for such variables, which increases statistical power. 

4. Combine these three figures:

(T–1) + (B+C–1) = D

5. Add at least 10 and at most 20

The sample size should be at least (D+10) and at most (D+20). 

Example of the resource equation method

An investigator wishes to examine the effect of a new delivery vehicle for an 
anti-inflammatory drug. The experiment will involve four treatments: a control, 
a group receiving a saline injection, a group receiving the vehicle alone and a 
group receiving the vehicle plus drug. Because of laboratory limitations, only 
four animals can be done on one day. The experimenter doesn't plan on 
adjusting the results for factors like the weight of the animal.
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In this case, T (treatments) is 4 and C (covariates) is zero. So the sample size is 
at least 10 + (T–1) which is 10 + 3, which is 13. However, 13 animals will have 
to be done in at least 3 batches (assuming that the lab could manage a batch of 
five). This means that the experiment will probably have a minimum of 3 
blocks, and more likely four. So, taking the blocks into consideration, the 
minimum sample size will be 10 + (T–1) + (B–1), which is 10 + 3 + 3, which is 
16 animals. 

The experimenter might like to aim for the maximum number of animals, to 
reduce the possibility that the experiment will come to a false-negative 
conclusion. In this case, 20 + (T–1) suggests 23 animals, which will have to be 
done in 6 blocks of four. 20 + (T–1) + (B–1) is 28, which means running 7 
blocks of four, which requires another adjustment: an extra animal is needed 
because the number of blocks is now 7. The final maximum sample size is 29.

As you can see, when you are running an experiment in blocks, the sample size 
will depend on the number of blocks, which, in turn, may necessitate a small 
adjustment to the sample size.


Why do investigators use groups of 6 animals?

In early-stage research, most of the effects discovered will be dead ends. For 
this reason, researchers are only interested in pursuing differences between 
groups that are very large indeed. As can be seen from the table under 
“comparing the means of two groups”, two groups of 6 animals will detect a 
situation in which the scores of one group are almost entirely distinct from the 
scores of the other – there is a 92% chance that an animal in the high-scoring 
group will score higher than an animal in the low-scoring group. 

“Everyone else used 6” is not a sample size calculation

Researchers should remember that this precludes the power to detect smaller 
differences, and justify their sample sizes based on the statistical power and 
the requirement for clinically significant effects to be very large. It’s not 
enough to say that everyone else used groups of 6.  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8. Sample size for qualitative research

Issues

Qualitative researchers often regard sample size calculations as something that 
is only needed for quantitative research. However, qualitative research 
protocols typically contain statements like "participants will be recruited until 
data saturation occurs". So there is already an appreciation that a certain 
number of participants will be "enough participants". 

Clearly, it is important when planning (and especially budgeting) a qualitative 
research project to know how many participants will be needed. These 
guidelines are partly derived from an excellent paper by Morse  
1

General guidance

Over-estimate your sample size when writing a proposal and budgeting it. This 
gives you some insurance against difficulties in recruitment, participants whose 
data is not very useful and other unanticipated snags.


Specific factors affecting sample size

Scope of study and nature of the topic

If the scope of the study is broad, then more participants will be needed to 
reach saturation. Indeed, broad topics are more likely to require data from 
multiple data sources. Doing justice to a broad topic requires a large 
commitment of time and resources, including large amounts of data. Broad 
studies should not be undertaken unless they are well-supported and have a 
good chance of achieving what they set out to do.

If the study addresses an obvious, clear topic, and the information will be easily 
obtained from the participants, then fewer participants will be needed. Topics 
that are harder to grasp and formulate are often more important, but require 
greater skill and experience from the researcher, and will require more data. 

If they study topic is one about which people will have trouble talking (because 
it is complex, or embarrassing, or may depend on experiences which not 
everyone has) you will need more participants.

Quality of data and sample size

The ability of participants to devote time and thought to the interview, and to 
articulate their experiences and perceptions, and to reflect on them, will all 
affect the richness of the data. In particular, in some studies, participants may 
not be able to devote time to a long interview, or may not be physically or 
psychologically capable of taking part in a long interview, resulting in smaller 
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amounts of data from each interview. Where interviews are likely to be lower in 
information, larger sample sizes are needed. 

On the other hand, when participants are being interviewed several times, this 
will generate more data, and sample sizes will be smaller.

Variability and sample size

The more variable the experiences, perceptions and meanings of the 
participants, the more participants will be needed to achieve the same degree 
of saturation.

Shadowed data and sample size

This is a term coined by Morse for situations in which participants talk about 
the experiences of others. You might call it 'secondhand data'. Collecting such 
data can make interviews more information rich and make better use of each 
participant, reducing the total sample size required. In particular, encouraging 
participants to compare and contrast their experiences, views and meanings 
with those of others can throw important light on variability in the domain you 
are studying. However, shadowing is no substitute for collecting first hand 
data, and may introduce bias. 


So how many?

Morse recommends that semi-structured interviews with relatively small 
amounts of data per person should have 30 to 60 interviews. On the other 
hand, grounded theory research, with two to three unstructured interviews per 
person, should need 20 to 30 participants. In either case, the final choice of 
number should be guided by the other factors above. 


A failsafe approach based on failure to detect

One question that a qualitative researcher should think about is this: if 
something doesn't emerge in my research (an attitude, an experience etc) then 
how common could it be in the population I am researching? Research, to be 
valid, must have a reasonable chance of detecting things that are common 
enough to matter. Failure to detect something important is a risk in all 
research, qualitative and quantitative. While you cannot guarantee that your 
research will absolutely detect everything important, you can at least make an 
estimate of the likelihood that your sample will fail to include at least one 
important topic/view/meaning etc. 


Sample Size: qualitative research

74



The table shows numbers of participants and, for each number, shows how rare 
a theme, experience or meaning would have to be so that it was unlikely to be 
detected by the study.


Table 8.1 Sample size and likelihood of missing something important in 
qualitative research


As you can see, if a study of 60 people fails to identify a theme, experience or 
issue, that issue is probably rare – present in about one person in 20 or fewer. 
However, a study of 15 participants can fail to identify something which is 
present in one person in every four! And a study of 8 participants is quite likely 
to fail to find out things that affect half of the study population.

Clearly, shadowing (second hand data) can reduce these error rates by getting 
participants to talk about others, but this is no substitute for including the 
others in the research. Part of this is trying to chose a sample in such a way as 
to span the population, but this relies on knowing the factors that make for 
diversity in the population – something that may only become clear after the 
research is well under way. 

However, both expert opinion in the area of qualitative research and the table 
above suggest that samples of less than 20 participants have to be justified on 
the grounds that they are unusually rich in data and representative. 


Method

The table was calculated based on Poisson confidence intervals for zero 
observed frequencies at the given sample sizes, using Stata Release 14.1


Size of 
study

If you don't find 
something, the maximum 

likely prevalence is

That's roughly

60 6% 1 person in 20
40 9% 1 person in 10
30 13% 1 person in 8
20 18% 1 person in 6
15 25% 1 person in 4
10 37% 1 person in 3

8 46% 1 person in 2
5 74% 3 people in 4
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9. Resources for animal experiments


Festing, Michael FW, and Douglas G. Altman. "Guidelines for the design and 
statistical analysis of experiments using laboratory animals." ILAR journal 43.4 
(2002): 244-258. http://ilarjournal.oxfordjournals.org/content/43/4/244.full


This paper appears as part of a collection which you can peruse here: http://
ilarjournal.oxfordjournals.org/content/43/4.toc


Festing, Michael FW. "Design and statistical methods in studies using animal 
models of development." Ilar Journal 47.1 (2006): 5-14. http://
ilarjournal.oxfordjournals.org/content/47/1/5.full?
sid=6bb505df-77e8-48c3-8b9a-d67bd304deec
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9. Computer and online resources

Free, highly recommended package: G*Power


 http://gpower.hhu.de/

For applications that go beyond the ones described here, including multiple 
regression, I can strongly recommend G*Power, which is free and multi-
platform. There is an excellent manual. 


Standard statistical packages

Stata also has a powerful set of sample size routines, and there are many user-
written routines to calculate sample sizes for various types of study. Use the 
command findit sample size to get a listing of user-written commands that you 
can install. 

The free professional package R includes sample size calculation (but requires 
a bit of learning). I recommend using software called RStudio as an interface 
to R. It makes R far easier to learn and use. 

And no; SPSS will sell you a sample size package, but it isn't included with 
SPSS itself. If you use SPSS, my advice is to use G*Power and save money. 


Sample size calculators and Online resources

You can look for sample size software to download at

http://statpages.org/javasta2.html  

The Graph Pad website has a lot of helpful resources

http://graphpad.com/welcome.htm 

They make an excellent sample-size calculator application called StatMate 
which gets high scores for a simple, intelligent interface and very useful 
explanations of the process. It has a tutorial that walks you through. 

http://graphpad.com/scientific-software/statmate/

The OpenEpi website, which you can download to your computer for offline 
use, has some power calculations

http://www.openepi.com/Menu/OE_Menu.htm

There is a free Windows power calculation program at Vanderbilt Medical 
Center http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize

GPower is a very comprehensive package for both Windows and Mac, available 
from http://gpower.hhu.de/
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Online sample size calculators

WebPower

A splendid site that also offers an R package. It has a very comprehensive suite 
of power and sample size calculation methods. It also allows you to create a 
user ID so that you can save your work. There is a comprehensive manual. 
Recommended. 

https://webpower.psychstat.org/wiki/

Manual, which has lots of useful reading, here:

https://webpower.psychstat.org/wiki/_media/grant/webpower_manual_book.pdf

Power and sample size

http://powerandsamplesize.com/

Excellent site with well-designed and validated calculators for a wide variety of 
study designs. Recommended. 

Sealed Envelope power calculators

Calculations for clinical trials (the company provides support for clinical trials) 
including equivalence and non-inferiority trials

https://www.sealedenvelope.com/power/

Simple Interactive Statistical Analysis (SISA)

http://www.quantitativeskills.com/sisa/calculations/sampshlp.htm

Easy-to-use with good explanations but a smaller selection of study designs.

The survey system and Survey Monkey

http://www.surveysystem.com/sscalc.htm

https://www.surveymonkey.com/mp/sample-size-calculator/

Sample sizes for surveys. Survey Monkey has a very readable web page on 
sample size considerations.

Harvard sample size calculators

http://hedwig.mgh.harvard.edu/sample_size/size.html 

A small selection, but clearly organised by study type.

Rules of thumb

Gerard van Belle's chapter on rules of thumb for sample size calculation can be 
downloaded from his website (http://www.vanbelle.org/) It's extracted from his 
book.
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